Investigation of an Energy Source Temperature for NH3+ NaSCN and NH3+ LiNO3Absorption Refrigeration Systems

被引:3
|
作者
Modi, Nishant [1 ]
Pandya, Bhargav [2 ]
Patel, Jatin [1 ]
机构
[1] Pandit Deendayal Petr Univ, Sch Technol, Gandhinagar 382007, Gujarat, India
[2] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, W Midlands, England
来源
JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME | 2020年 / 142卷 / 10期
关键词
energy source temperature; absorption refrigeration; NH3 + NaSCN and NH3 + LiNO3 pairs; cutoff temperature; alternative energy sources; energy conversion; systems; energy systems analysis; heat energy generation; storage; transfer; SODIUM THIOCYANATE; LITHIUM-NITRATE; ABSORPTION; NH3-LINO3; NH3-NASCN; AMMONIA;
D O I
10.1115/1.4047017
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper evaluates the energy source temperature for novel salts based ammonia/sodium thiocyanate (NH3+ NaSCN) and ammonia/lithium nitrate (NH3+ LiNO3) absorption refrigeration systems. Minimum energy source temperature (cutoff) required to initiate the cooling, critical energy source temperature for optimized thermodynamic performance and possible maximum energy source temperature to avoid crystallization have been determined, and empirical correlations are developed to facilitate continuous operation of the system. A comparison of cutoff energy source temperature depicts that the NH3+ NaSCN pair requires averagely 6 -7 degrees C higher cutoff temperature compared with the NH3+ LiNO(3)pair. Contradictory to this, the maximum coefficient of performance (COP) of the NH3+ NaSCN pair is 7.02% higher than that the NH3+ LiNO(3)pair. However, NH3+ NaSCN pair operates in a very narrow range of energy source temperature. From the P - T - X diagram, the crystallization phenomenon is clarified and the maximum energy source temperature has been determined beyond which the system would not function due to crystallization problems. For -10 degrees C evaporator temperature, the energy source temperature should be controlled between 87 degrees C and 115 degrees C for the NH3+ NaSCN pair and between 80 degrees C and 147 degrees C for the NH3+ LiNO(3)pair.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Thermal conductivity enhancement of the binary mixture (NH3 + LiNO3) by the addition of CNTs
    Cuenca, Yolanda
    Vernet, Anton
    Valles, Manel
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 41 : 113 - 120
  • [32] Performance analysis of absorption heat recovering cycle with high-pressure booster using NH3-LiNO3 as the working pair
    Chen E.
    Dai Y.
    Huagong Xuebao/CIESC Journal, 2021, 72 : 445 - 452
  • [33] Analysis of NH3-H2O-LiBr absorption refrigeration integrated with an electrodialysis device
    Liang, Yuanyuan
    Li, Shuhong
    Yue, Xiaoyang
    Zhang, Xiaosong
    APPLIED THERMAL ENGINEERING, 2017, 115 : 134 - 140
  • [34] Effect of the NH3-LiNO3 concentration and pressure in a fog-jet spray adiabatic absorber
    Ventas, Ruben
    Vereda, Ciro
    Lecuona, Antonio
    Venegas, Maria
    Rodriguez-Hidalgo, Maria Carmen
    APPLIED THERMAL ENGINEERING, 2012, 37 : 430 - 437
  • [35] Experimental Study of a Bubble Mode Absorption with an Inner Vapor Distributor in a Plate Heat Exchanger-Type Absorber with NH3-LiNO3
    Chan, Jorge J.
    Best, Roberto
    Cerezo, Jesus
    Barrera, Mario A.
    Lezama, Francisco R.
    ENERGIES, 2018, 11 (08):
  • [36] Ti3C2Tx ( T 1/4 F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3+
    Zhao, Jinxiu
    Zhang, Lei
    Xie, Xiao-Ying
    Li, Xianghong
    Ma, Yongjun
    Liu, Qian
    Fang, Wei-Hai
    Shi, Xifeng
    Cui, Ganglong
    Sun, Xuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (47) : 24031 - 24035
  • [37] Analysis of NH3-H2O-LiBr absorption refrigeration system based on membrane separator
    Yue, Xiaoyang
    Li, Shuhong
    Xu, Mengkai
    Li, Yanjun
    Du, Kai
    Yang, Liu
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2019, 38 (02): : 813 - 818
  • [38] A shock-tube study of NH3 and NH3/H-2 oxidation using laser absorption of NH3 and H2O
    Alturaifi, Sulaiman A.
    Mathieu, Olivier
    Petersen, Eric L.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2023, 39 (01) : 233 - 241
  • [39] Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems
    Rezayan, Omid
    Behbahaninia, Ali
    ENERGY, 2011, 36 (02) : 888 - 895
  • [40] Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2/NH3 cascade refrigeration systems
    Lee, Tzong-Shing
    Liu, Cheng-Hao
    Chen, Tung-Wei
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2006, 29 (07): : 1100 - 1108