A cholera model in a patchy environment with water and human movement

被引:95
作者
Eisenberg, Marisa C. [1 ,2 ]
Shuai, Zhisheng [3 ]
Tien, Joseph H. [4 ]
van den Driessche, P. [5 ]
机构
[1] Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[3] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
[4] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[5] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Cholera; Patch model; Water movement; Human movement; Global stability; Control strategy; MULTIPLE TRANSMISSION PATHWAYS; DISEASE TRANSMISSION; POPULATION DISPERSAL; INFECTIOUS-DISEASE; GLOBAL DYNAMICS; SPATIAL SPREAD; EPIDEMIC; HAITI;
D O I
10.1016/j.mbs.2013.08.003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A mathematical model for cholera is formulated that incorporates direct and indirect transmission, patch structure, and both water and human movement. The basic reproduction number 72.0 is defined and shown to give a sharp threshold that determines whether or not the disease dies out. Kirchhoff's Matrix Tree Theorem from graph theory is used to investigate the dependence of R-0 on the connectivity and movement of water, and to prove the global stability of the endemic equilibrium when R-0 > 1. The type/target reproduction numbers are derived to measure the control strategies that are required to eradicate cholera from all patches. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 36 条
[1]   Asymptotic profiles of the steady states for an sis epidemic patch model [J].
Allen, L. J. S. ;
Bolker, B. M. ;
Lou, Y. ;
Nevai, A. L. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) :1283-1309
[2]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[3]  
Arino J, 2006, FIELDS I COMMUN, V48, P1
[4]   Microbial contamination of drinking water and disease outcomes in developing regions [J].
Ashbolt, NJ .
TOXICOLOGY, 2004, 198 (1-3) :229-238
[5]   On the space-time evolution of a cholera epidemic [J].
Bertuzzo, E. ;
Azaele, S. ;
Maritan, A. ;
Gatto, M. ;
Rodriguez-Iturbe, I. ;
Rinaldo, A. .
WATER RESOURCES RESEARCH, 2008, 44 (01)
[6]   Prediction of the spatial evolution and effects of control measures for the unfolding Haiti cholera outbreak [J].
Bertuzzo, E. ;
Mari, L. ;
Righetto, L. ;
Gatto, M. ;
Casagrandi, R. ;
Blokesch, M. ;
Rodriguez-Iturbe, I. ;
Rinaldo, A. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[7]   On spatially explicit models of cholera epidemics [J].
Bertuzzo, E. ;
Casagrandi, R. ;
Gatto, M. ;
Rodriguez-Iturbe, I. ;
Rinaldo, A. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 (43) :321-333
[8]  
Bhatia N. P, 1967, Lecture Notes in Mathematics, V1, P113
[9]   Oscillations in a patchy environment disease model [J].
Brauer, Fred ;
Van den Driessche, P. ;
Wang, Lin .
MATHEMATICAL BIOSCIENCES, 2008, 215 (01) :1-10
[10]   Vaccination strategies for epidemic cholera in Haiti with implications for the developing world [J].
Chao, Dennis L. ;
Halloran, M. Elizabeth ;
Longini, Ira M., Jr. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (17) :7081-7085