ReS2: A High-Rate Pseudocapacitive Energy Storage Material

被引:23
作者
Ghosh, Kalyan [1 ]
Ng, Siowwoon [1 ]
Iffelsberger, Christian [1 ]
Pumera, Martin [1 ,2 ,3 ,4 ]
机构
[1] Brno Univ Technol, Cent European Inst Technol, Future Energy & Innovat Lab, Brno 61200, Czech Republic
[2] Energy Res Inst NTU ERI N, Singapore 637553, Singapore
[3] Yonsei Univ, Dept Chem & Biomol Engn, Seoul 03722, South Korea
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
关键词
TMDs; 2D materials; ReS2; pseudocapacitor; screen printed electrode; energy storage; SCANNING ELECTROCHEMICAL MICROSCOPY; CHEMICAL-VAPOR-DEPOSITION; HIGH-QUALITY; HYBRID FILM; PERFORMANCE; LITHIUM; CARBON; EVOLUTION; ELECTRODES; NANOSHEETS;
D O I
10.1021/acsaem.0c02187
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition-metal dichalcogenides have attracted exceptional attention in the field of energy storage such as lithium-ion batteries and supercapacitors because of their unique electronic, optical, and mechanical properties. In this work, we synthesized rhenium disulfide (ReS2) on high-throughput, electronics industry-standard, screen-printed electrodes (SPEs) to use as an electrode material for supercapacitor application. The ReS2 nanoparticles were grown by a room-temperature, aqueoussolution-based electrochemical deposition method, which is capable of parallel modification of SPEs. The topographic detail and electrochemical activity of the sample surface were characterized by a spatial electroanalytical mapping technique known as scanning electrochemical microscopy. The charge storage kinetics are appraised with deep insight following diffusion-controlled and capacitive-like mechanisms. The ReS2-coated SPE displayed a promising specific capacitance of 156 mF cm(-2) at a current density of 1.6 mA cm(-2) , which shows that ReS2 can be used as a potential pseudocapacitive material in supercapacitors.
引用
收藏
页码:10261 / 10269
页数:9
相关论文
共 66 条
  • [1] Scanning electrochemical microscopy (SECM): An investigation of the effects of tip geometry on amperometric tip response
    Amphlett, JL
    Denuault, G
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (49) : 9946 - 9951
  • [2] ANGERSTEINKOZLOWSKA H, 1977, J ELECTROANAL CHEM, V75, P45, DOI 10.1016/S0022-0728(77)80071-5
  • [3] Synthesis of highly destacked ReS2 layers embedded in amorphous carbon from a metal-organic precursor
    Antonio Aliaga, Juan
    Alonso-Nunez, Gabriel
    Zepeda, Trino
    Francisco Araya, Juan
    Felipe Rubio, Pedro
    Bedolla-Valdez, Zaira
    Paraguay-Delgado, Francisco
    Farias, Mario
    Fuentes, Sergio
    Gonzalez, Guillermo
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2016, 447 : 29 - 34
  • [4] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [5] Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/nmat3601, 10.1038/NMAT3601]
  • [6] SCANNING ELECTROCHEMICAL MICROSCOPY - INTRODUCTION AND PRINCIPLES
    BARD, AJ
    FAN, FRF
    KWAK, J
    LEV, O
    [J]. ANALYTICAL CHEMISTRY, 1989, 61 (02) : 132 - 138
  • [7] Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation
    Borowiec, Joanna
    Gillin, William P.
    Willis, Maureen A. C.
    Boi, Filippo S.
    He, Y.
    Wen, J. Q.
    Wang, S. L.
    Schulz, Leander
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (05)
  • [8] Rhenium(IV) sulfide nanotubes
    Brorson, M
    Hansen, TW
    Jacobsen, CJH
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (39) : 11582 - 11583
  • [9] Conway B., 1999, Scientific Fundamentals and Technological Applications
  • [10] Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis
    Couto, R. A. S.
    Lima, J. L. F. C.
    Quinaz, M. B.
    [J]. TALANTA, 2016, 146 : 801 - 814