ASYMPTOTIC DISTRIBUTIONS AND BERRY-ESSEEN INEQUALITIES FOR LOTKA-NAGAEV ESTIMATOR OF A POISSON RANDOMLY INDEXED BRANCHING PROCESS

被引:0
作者
Gao, Zhenlong [1 ]
Zhang, Huili [1 ]
机构
[1] Qufu Normal Univ, Sch Stat, Qufu 273165, Shandong, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2020年 / 14卷 / 03期
关键词
Asymptotic distribution; Berry-Esseen's inequality; branching process; Poisson process; LARGE DEVIATION RATES; HARMONIC MOMENTS;
D O I
10.7153/jmi-2020-14-47
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a Galton-Watson process {Z(n)}, the Lotka-Negaev estimator for offspring mean m is R-n = Z(n+1)/Z(n). Let N-t be a Poisson process independent of {Z(n)}, the continuous time process {Z(Nt)} is a Poisson randomly indexed branching process. We show the asymptotic distributions for {R-t := R-Nt}.
引用
收藏
页码:735 / 746
页数:12
相关论文
共 2 条
  • [1] Large Deviations for Lotka-Nagaev Estimator of a Randomly Indexed Branching Process
    Gao, Zhenlong
    Qiu, Lina
    FILOMAT, 2018, 32 (17) : 5803 - 5808
  • [2] DEVIATION ESTIMATIONS FOR LOTKA-NAGAEV ESTIMATOR OF A BRANCHING PROCESS WITH IMMIGRATION
    Yuan, Deqiang
    Gao, Zhenlong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02): : 599 - 608