Mean-Square Exponential Synchronization of Stochastic Complex Dynamical Networks with Switching Topology by Impulsive Control

被引:0
作者
Wu, Xuefei [1 ,2 ]
Xu, Chen [3 ]
机构
[1] Shenzhen Polytech, Sch Comp Engn, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Coll Informat & Engn, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Inst Intelligent Comp Sci, Shenzhen 518060, Peoples R China
基金
美国国家科学基金会;
关键词
NEURAL-NETWORKS; SYSTEMS; DELAYS; CRITERIA;
D O I
10.1155/2013/932058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the mean-square exponential synchronization issues of delayed stochastic complex dynamical networks with switching topology and impulsive control. By using the Lyapunov functional method, impulsive control theory, and linear matrix inequality (LMI) approaches, some sufficient conditions are derived to guarantee the mean-square exponential synchronization of delay complex dynamical network with switch topology, which are independent of the network size and switch topology. Numerical simulations are given to illustrate the effectiveness of the obtained results in the end.
引用
收藏
页数:8
相关论文
共 28 条
[1]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[2]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[3]   Robust impulsive synchronization of complex delayed dynamical networks [J].
Cai, Shuiming ;
Zhou, Jin ;
Xiang, Lan ;
Liu, Zengrong .
PHYSICS LETTERS A, 2008, 372 (30) :4990-4995
[4]   Synchronization in an array of linearly stochastically coupled networks with time delays [J].
Cao, Jinde ;
Wang, Zidong ;
Sun, Yonghui .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 385 (02) :718-728
[5]   Leader Following of Nonlinear Agents With Switching Connective Network and Coupling Delay [J].
Jia, Qiang ;
Tang, Wallace K. S. ;
Halang, Wolfgang A. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2011, 58 (10) :2508-2519
[6]   Impulsive consensus in directed networks of identical nonlinear oscillators with switching topologies [J].
Jiang, Haibo ;
Bi, Qinsheng ;
Zheng, Song .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (01) :378-387
[7]   Synchronization in general complex dynamical networks with coupling delays [J].
Li, CG ;
Chen, GR .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 343 :263-278
[8]   Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances [J].
Liang, Jinling ;
Wang, Zidong ;
Liu, Yurong ;
Liu, Xiaohui .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (04) :1073-1083
[9]   Exponential Synchronization of Complex Delayed Dynamical Networks With Switching Topology [J].
Liu, Tao ;
Zhao, Jun ;
Hill, David J. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (11) :2967-2980
[10]   Exponential synchronization of nonlinear coupled dynamical networks with a delayed coupling [J].
Liu, Xiwei ;
Chen, Tianping .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 381 (82-92) :82-92