Bifacial p-Type Silicon Shingle Solar Cells - the "pSPEER" Concept

被引:21
作者
Baliozian, Puzant [1 ]
Lohmueller, Elmar [1 ]
Fellmeth, Tobias [1 ]
Woehrle, Nico [1 ]
Krieg, Alexander [1 ]
Preu, Ralf [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
关键词
bifacial; p-type silicon; PERC; pSPEER; shingle solar cells;
D O I
10.1002/solr.201700171
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Shingled interconnection of solar cells allows increased output power density p(out) by (i) increasing the active cell area within the module, (ii) decreasing shading losses, and (iii) reducing both series resistance per cell as well as interconnection losses. An additional increase in p(out) is possible by shingled interconnection using bifacial solar cells, allowing the light capture from the rear side as well. The p-type silicon shingled passivated edge, emitter, and rear (pSPEER) solar cell concept introduced and examined in this work as an approach for fabrication of bifacial shingle solar cells is based on the passivated emitter and rear cell (PERC) concept. This article portrays bifacial pSPEER solar cells that are fabricated using industrial 6-inch p-type Czochralski-grown silicon PERC precursors. After contact firing, the 6-inch host wafers are separated by means of conventional laser scribing and manual mechanical cleaving into six pSPEER solar cells each with an area of 23 x 148 mm(2). Current-voltage measurements of these bifacial pSPEER solar cells with front side illumination yield peak p(out,f) = 20.4 mW cm(-2) on a black background (total cell area, busbar included). For an irradiance of 1000 W m(-2), this p(out,f) is equivalent to an energy conversion efficiency of 20.4%. By additional rear side illumination with an irradiance of 100 W m(-2), peak p(out) = 21.5 mW cm(-2) is obtained for these pSPEER solar cells.
引用
收藏
页数:5
相关论文
共 18 条
[1]   22.8-PERCENT EFFICIENT SILICON SOLAR-CELL [J].
BLAKERS, AW ;
WANG, A ;
MILNE, AM ;
ZHAO, JH ;
GREEN, MA .
APPLIED PHYSICS LETTERS, 1989, 55 (13) :1363-1365
[2]   Improvement on industrial n-type bifacial solar cell with >20.6% efficiency [J].
Chang, Hung-Chih ;
Huang, Chih-Jeng ;
Hsieh, Po-Tsung ;
Mo, Wei-Cheng ;
Yu, Shu-Hung ;
Li, Chi-Chun .
PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CRYSTALLINE SILICON PHOTOVOLTAICS (SILICONPV 2014), 2014, 55 :643-648
[3]  
Chieng Y. K., 1993, Progress in Photovoltaics: Research and Applications, V1, P293, DOI 10.1002/pip.4670010406
[4]  
Dickson J. D. C., 1960, U.S. patent, Patent No. [2,938,938, 2938938]
[5]   High quality half-cell processing using thermal laser separation [J].
Eiternick, Stefan ;
Kaule, Felix ;
Zuehlke, Hans-Ulrich ;
Kiessling, Thomas ;
Grimm, Michael ;
Schoenfelder, Stephan ;
Turek, Marko .
5TH INTERNATIONAL CONFERENCE ON SILICON PHOTOVOLTAICS, SILICONPV 2015, 2015, 77 :340-345
[6]   Bifacial potential of single- and double-sided collecting silicon solar cells [J].
Fertig, Fabian ;
Woehrle, Nico ;
Greulich, Johannes ;
Krauss, Karin ;
Lohmueller, Elmar ;
Meier, Sebastian ;
Wolf, Andreas ;
Rein, Stefan .
PROGRESS IN PHOTOVOLTAICS, 2016, 24 (06) :818-829
[7]   Economic feasibility of bifacial silicon solar cells [J].
Fertig, Fabian ;
Nold, Sebastian ;
Woehrle, Nico ;
Greulich, Johannes ;
Haedrich, Ingrid ;
Krauss, Karin ;
Mittag, Max ;
Biro, Daniel ;
Rein, Stefan ;
Preu, Ralf .
PROGRESS IN PHOTOVOLTAICS, 2016, 24 (06) :800-817
[8]   High-efficiency silicon solar cells for low-illumination applications [J].
Glunz, SW ;
Dicker, J ;
Esterle, M ;
Hermle, M ;
Isenberg, J ;
Kamerewerd, FJ ;
Knobloch, J ;
Kray, D ;
Leimenstoll, A ;
Lutz, F ;
Osswald, D ;
Preu, R ;
Rein, S ;
Schäffer, E ;
Schetter, C ;
Schmidhuber, H ;
Schmidt, H ;
Steuder, M ;
Vorgrimler, C ;
Willeke, G .
CONFERENCE RECORD OF THE TWENTY-NINTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 2002, 2002, :450-453
[9]  
Morad R., 2016, U.S. patent, Patent No. [9,397,252 B2, 9397252]
[10]  
Morad R., 2016, U.S. patent, Patent No. [9,401,451 B2, 9401451]