Minimum-Time Selective Control of Homonuclear Spins

被引:18
作者
Zhang, Tian-Ming [1 ,2 ]
Wu, Re-Bing [1 ,2 ]
Zhang, Fei-Hao [2 ,3 ]
Tarn, Tzyh-Jong [2 ,4 ]
Long, Gui-Lu [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Ctr Quantum Informat Sci & Technol, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Dept Phys, Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
[4] Washington Univ, Dept Elect & Syst Engn, St Louis, MO 63130 USA
基金
中国国家自然科学基金;
关键词
Geodesic trajectory; gradient algorithm; quantum control; time optimal control; time-scale decomposition; QUANTUM-SYSTEMS; COMPUTATION; DYNAMICS; GATES;
D O I
10.1109/TCST.2015.2390191
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In nuclear magnetic resonance (NMR) quantum computation, the selective control of multiple homonuclear spins is usually slow because their resonance frequencies are very close to each other. To quickly implement the controls against decoherence effects, this brief presents an efficient numerical algorithm for designing minimum-time local transformations in two homonuclear spins. We obtain an accurate minimum-time estimation via geometric analysis on the two-timescale decomposition of the dynamics. Such estimation narrows down the range of search for the minimum-time control with a gradient-type optimization algorithm. Numerical simulations show that this method can remarkably reduce the search efforts, especially when the frequency difference is very small and the control field is high. Its effectiveness is further demonstrated by NMR experiments with two homunuclear carbon spins in a trichloroethylene (C2H1Cl3) sample system.
引用
收藏
页码:2018 / 2025
页数:8
相关论文
共 47 条
[1]   Modeling and Control of Quantum Systems: An Introduction [J].
Altafini, Claudio ;
Ticozzi, Francesco .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) :1898-1917
[2]  
[Anonymous], 1975, Applied Optimal Control
[3]   Simultaneous time-optimal control of the inversion of two spin-1/2 particles [J].
Assemat, E. ;
Lapert, M. ;
Zhang, Y. ;
Braun, M. ;
Glaser, S. J. ;
Sugny, D. .
PHYSICAL REVIEW A, 2010, 82 (01)
[4]  
Avriel M., 2012, Nonlinear programming: analysis and methods
[5]   Geometric Optimal Control of the Contrast Imaging Problem in Nuclear Magnetic Resonance [J].
Bonnard, Bernard ;
Cots, Olivier ;
Glaser, Steffen J. ;
Lapert, Marc ;
Sugny, Dominique ;
Zhang, Yun .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (08) :1957-1969
[6]   Time-optimal synthesis of SU(2) transformations for a spin-1/2 system [J].
Boozer, A. D. .
PHYSICAL REVIEW A, 2012, 85 (01)
[7]   Time-optimal synthesis for left-invariant control systems on SO(3) [J].
Boscain, U ;
Chitour, Y .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (01) :111-139
[8]   Time minimal trajectories for a spin 1/2 particle in a magnetic field [J].
Boscain, Ugo ;
Mason, Paolo .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (06)
[9]   Time-optimal quantum evolution - art. no. 060503 [J].
Carlini, A ;
Hosoya, A ;
Koike, T ;
Okudaira, Y .
PHYSICAL REVIEW LETTERS, 2006, 96 (06)
[10]   Time-optimal unitary operations [J].
Carlini, Alberto ;
Hosoya, Akio ;
Koike, Tatsuhiko ;
Okudaira, Yosuke .
PHYSICAL REVIEW A, 2007, 75 (04)