Functional calculus and dilation for C0-groups of polynomial growth

被引:5
作者
Kriegler, C. [1 ]
机构
[1] Univ Blaise Pascal Clermont Ferrand 2, CNRS, Lab Math, UMR 6620, F-63177 Clermont Ferrand, France
关键词
Functional calculus; Dilation theorems; C-0-groups; Besov spaces; Resolvent and semigroup estimates; H-INFINITY-CALCULUS; BANACH-SPACES; THEOREMS; SUMS;
D O I
10.1007/s00233-012-9393-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U(t) = e(itB) be a C-0-group on a Banach space X. Let further phi is an element of C-c(infinity)(R) satisfy Sigma(n is an element of Z)phi(center dot - n) equivalent to 1. For alpha >= 0, we put E-infinity(alpha) = {f is an element of C-b(R) : parallel to f parallel to(E infinity alpha) = Sigma(n is an element of Z)(1 + vertical bar n vertical bar)(alpha) parallel to f * [phi(center dot - n)](boolean OR)parallel to(L infinity(R)) < infinity}, which is a Banach algebra. It is shown that parallel to U(t)parallel to <= C(1 + vertical bar t vertical bar)(alpha) for all t is an element of R if and only if the generator B has a bounded E-infinity(alpha) functional calculus, under some minimal hypotheses, which exclude simple counterexamples. A third equivalent condition is that U(t) admits a dilation to a shift group on some space of functions R -> X. In the case U(t) = A(it) with some sectorial operator A, we use this calculus to show optimal bounds for fractions of the semigroup generated by A, resolvent functions and variants of it. Finally, the E-infinity(alpha) calculus is compared with Besov functional calculi as considered in Cowling et al. (J. Aust. Math. Soc., Ser. A, 60(1): 51-89, 1996) and Kriegler (Spectral multipliers, R-bounded homomorphisms, and analytic diffusion semigroups. PhD-thesis).
引用
收藏
页码:393 / 433
页数:41
相关论文
共 26 条
  • [1] [Anonymous], 2004, INTRO HARMONIC ANAL, DOI DOI 10.1017/CBO9781139165372
  • [2] [Anonymous], 1980, LOND MATH SOC MONOGR
  • [3] SPECTRAL THEOREM FOR UNBOUNDED STRONGLY CONTINUOUS-GROUPS ON A HILBERT-SPACE
    BOYADZHIEV, K
    DELAUBENFELS, R
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (01) : 127 - 136
  • [4] Clément P, 2000, STUD MATH, V138, P135
  • [5] Banach space operators with a bounded H infinity functional calculus
    Cowling, M
    Doust, I
    McIntosh, A
    Yagi, A
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 60 : 51 - 89
  • [6] Diestel J., 1995, Absolutely Summing Operators
  • [7] Fröhlich AM, 2006, B SOC MATH FR, V134, P487
  • [8] FROHLICH AM, 2003, THESIS U KARLSRUHE
  • [9] HAASE M, 2006, OPER THEOR, V169, pR11, DOI 10.1007/3-7643-7698-8_2
  • [10] A transference principle for general groups and functional calculus on UMD spaces
    Haase, Markus
    [J]. MATHEMATISCHE ANNALEN, 2009, 345 (02) : 245 - 265