A versatile macro-initiator with dual functional anchoring groups for surface-initiated atom transfer radical polymerization on various substrates

被引:52
作者
Wei, Qiangbing [1 ,2 ]
Wang, Xiaolong [1 ]
Zhou, Feng [1 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
CARBON NANOTUBES; BRUSHES; DENSITY; LAYER; MACROINITIATOR; NANOPARTICLES; WETTABILITY; ACTUATION; CHEMISTRY; DRIVEN;
D O I
10.1039/c2py20148h
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A versatile macro-initiator with dual functional anchoring groups for surface-initiated atom transfer radical polymerization (SI-ATRP) on various substrates is reported. Conventional free radical copolymerization was performed with N-(3,4-dihydroxyphenyl) ethyl methacrylamide (a dopamine anchor-containing monomer), 4-(1-pyrenyl) butyl methacrylate (a pyrene anchor-containing monomer), and 2-(2-bromoisobutyryloxy) ethyl methacrylate (an ATRP-initiating monomer) to produce a random copolymer. Dopamine anchors on the copolymer could assemble on the macroscopic planar substrates (e.g., Si, Ti, Au, Cu, stainless steel, Al2O3, PI, PTFE, PDMS, textile, and wood) and pyrene anchors on the carbon-based nanoscaled materials (e.g., two-dimensional graphene oxide and one-dimensional carbon nanotubes). The successful preparation of polymer brushes through SI-ATRP in a water and methanol system from various substrates was characterized via ATR-IR, AFM, XPS, TGA, and TEM, which confirmed the versatility of the macro-initiator. More importantly, a synergistic anchoring effect between catechol and pyrene groups was discovered, leading to high quantities of grafted polymers from the graphene oxide substrates. Microcontact printing of the macro-initiator was also demonstrated in the formation of patterned surfaces on the Ti substrate.
引用
收藏
页码:2129 / 2137
页数:9
相关论文
共 66 条
[1]  
Advincula R. C., 2004, POLYM BRUSHES SYNTHE
[2]   Self-affine surfaces of polymer brushes [J].
Akgun, Bulent ;
Lee, Dong Ryeol ;
Kim, Hyeonjae ;
Zhang, Haining ;
Prucker, Oswald ;
Wang, Jin ;
Ruehe, Juergen ;
Foster, Mark D. .
MACROMOLECULES, 2007, 40 (17) :6361-6369
[3]   The Contribution of DOPA to Substrate-Peptide Adhesion and Internal Cohesion of Mussel-Inspired Synthetic Peptide Films [J].
Anderson, Travers H. ;
Yu, Jing ;
Estrada, Abril ;
Hammer, Malte U. ;
Waite, J. Herbert ;
Israelachvili, Jacob N. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (23) :4196-4205
[4]   Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications [J].
Barbey, Raphael ;
Lavanant, Laurent ;
Paripovic, Dusko ;
Schuewer, Nicolas ;
Sugnaux, Caroline ;
Tugulu, Stefano ;
Klok, Harm-Anton .
CHEMICAL REVIEWS, 2009, 109 (11) :5437-5527
[5]   Patterned polymer brushes grafted from bromine-functionatized, chemically active surface templates [J].
Becer, C. Remzi ;
Haensch, Claudia ;
Hoeppener, Stephanie ;
Schubert, Ulrich S. .
SMALL, 2007, 3 (02) :220-225
[6]   Recent advance in functionalized graphene/polymer nanocomposites [J].
Cai, Dongyu ;
Song, Mo .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (37) :7906-7915
[7]   Hemocompatibility of Poly(vinylidene fluoride) Membrane Grafted with Network-Like and Brush-Like Antifouling Layer Controlled via Plasma-Induced Surface PEGylation [J].
Chang, Yung ;
Shih, Yu-Ju ;
Ko, Chao-Yin ;
Jhong, Jheng-Fong ;
Liu, Ying-Ling ;
Wei, Ta-Chin .
LANGMUIR, 2011, 27 (09) :5445-5455
[8]   Robust, biomimetic polymer brush layers grown directly from a planar mica surface [J].
Chen, Meng ;
Briscoe, Wuge H. ;
Armes, Steve P. ;
Cohen, Hagai ;
Klein, Jacob .
CHEMPHYSCHEM, 2007, 8 (09) :1303-1306
[9]   Lubrication at Physiological Pressures by Polyzwitterionic Brushes [J].
Chen, Meng ;
Briscoe, Wuge H. ;
Armes, Steven P. ;
Klein, Jacob .
SCIENCE, 2009, 323 (5922) :1698-1701
[10]   Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J].
Chen, RJ ;
Zhang, YG ;
Wang, DW ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) :3838-3839