CPG Driven RBF Network Control with Reinforcement Learning for Gait Optimization of a Dung Beetle-Like Robot

被引:19
作者
Pitchai, Matheshwaran [1 ]
Xiong, Xiaofeng [1 ]
Thor, Mathias [1 ]
Billeschou, Peter [1 ]
Mailander, Peter Lukas [2 ]
Leung, Binggwong [3 ]
Kulvicius, Tomas [2 ]
Manoonpong, Poramate [1 ,3 ]
机构
[1] Univ Southern Denmark, Embodied AI & Neurorobot Lab, Ctr BioRobot, Maersk McKinney Moller Inst, Odense M, Denmark
[2] Univ Goettingen, Dept Computat Neurosci, Gottingen, Germany
[3] Vidyasirimedhi Inst Sci & Technol, Bioinspired Robot & Neural Engn Lab, Sch Informat Sci & Technol, Rayong, Thailand
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: THEORETICAL NEURAL COMPUTATION, PT I | 2019年 / 11727卷
基金
欧盟地平线“2020”;
关键词
Brain inspired computing; Reinforcement learning; Artificial neural networks; CENTRAL PATTERN GENERATORS; LOCOMOTION;
D O I
10.1007/978-3-030-30487-4_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we employ a central pattern generator (CPG) driven radial basis function network (RBFN) based controller to learn optimized locomotion for a complex dung beetle-like robot using reinforcement learning approach called "Policy Improvement with Path Integrals (PI2)". Our CPG driven RBFN controller is inspired by rhythmic dynamic movement primitives (DMPs). The controller can be also seen as an extension to a traditional CPG controller, which usually controls only the frequency of the motor patterns but not the shape. Our controller uses the CPG to control the frequency while the RBFN takes care of the shape of the motor patterns. In this paper, we only focus on the shape of the motor patterns and optimize those with respect to walking speed and energy efficiency. As a result, the robot can travel faster and consume less power than using only the CPG controller.
引用
收藏
页码:698 / 710
页数:13
相关论文
共 15 条
[1]  
[Anonymous], P 10 INT S ART INT R
[2]   Advances in real-world applications for legged robots [J].
Bellicoso, C. Dario ;
Bjelonic, Marko ;
Wellhausen, Lorenz ;
Holtmann, Kai ;
Guenther, Fabian ;
Tranzatto, Marco ;
Fankhauser, Peter ;
Hutter, Marco .
JOURNAL OF FIELD ROBOTICS, 2018, 35 (08) :1311-1326
[3]  
Chatterjee S., PROC 2014 23 INT C R, P1, DOI [10.1109/RAAD.2014.7002234, DOI 10.1109/RAAD.2014.7002234]
[4]   Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot [J].
Grinke, Eduard ;
Tetzlaff, Christian ;
Woergoetter, Florentin ;
Manoonpong, Poramate .
FRONTIERS IN NEUROROBOTICS, 2015, 9
[5]   Bio-inspired design and movement generation of dung beetle-like legs [J].
Ignasov J. ;
Kapilavai A. ;
Filonenko K. ;
Larsen J.C. ;
Baird E. ;
Hallam J. ;
Büsse S. ;
Kovalev A. ;
Gorb S.N. ;
Duggen L. ;
Manoonpong P. .
Artificial Life and Robotics, 2018, 23 (04) :555-563
[6]  
Ijspeert A. J., 2003, NEURAL INFORM PROCES, V15, P1547
[7]   Central pattern generators for locomotion control in animals and robots: A review [J].
Ijspeert, Auke Jan .
NEURAL NETWORKS, 2008, 21 (04) :642-653
[8]   Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors [J].
Ijspeert, Auke Jan ;
Nakanishi, Jun ;
Hoffmann, Heiko ;
Pastor, Peter ;
Schaal, Stefan .
NEURAL COMPUTATION, 2013, 25 (02) :328-373
[9]  
Machado J.T., 2006, INT S MATH METH ENG, P1
[10]   Sensor-driven neural control for omnidirectional locomotion and versatile reactive behaviors of walking machines [J].
Manoonpong, P. ;
Pasemann, F. ;
Woergoetter, F. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2008, 56 (03) :265-288