Application of Evolutionary Algorithms in Guaranteed Parameter Estimation

被引:0
|
作者
Goerke, Thilo [1 ]
Engell, Sebastian [1 ]
机构
[1] Tech Univ Dortmund, Proc Operat & Dynam Grp, Dortmund, Germany
关键词
guaranteed parameter estimation; memetic algorithm; measurement uncertainty;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Model-based optimization and control is becoming more and more important in the process industries and in general. Modelling almost always involves the estimation of parameters from available data. The parameter estimation problem is usually posed as the minimization of the prediction error or the maximization of the likelihood function. If the uncertainty of the measurements taken from a real process is assumed to be an interval around the measured values, a set of parameter vectors exists that is able to describe the behavior of the systems within these uncertainties. Guaranteed parameter estimation deals with the problem of determining all parameter vectors that are compatible with uncertain observations. The solution of guaranteed parameter estimation problems for nonlinear dynamic models is computationally very demanding. In this contribution we present a memetic algorithm that determines the sets of feasible model parameters efficiently. It is applied to the estimation of kinetic parameters of a model that describes a copolymerization reaction. In the memetic algorithm, the fitness evaluation is based on the distance of the feasible solutions to each other, thus the presented approach is not restricted to a specific type of models.
引用
收藏
页码:5100 / 5105
页数:6
相关论文
共 50 条
  • [1] Evolutionary Algorithms for Parameter Estimation of Metabolic Systems
    Lebedik, Anastasia Slustikova
    Zelinka, Ivan
    Advances in Intelligent Systems and Computing, 2013, 210 : 201 - 209
  • [2] Improved real-coded quantum evolutionary algorithms and its application on parameter estimation
    Gao, Hui
    Zhang, Rui
    Kongzhi yu Juece/Control and Decision, 2011, 26 (03): : 418 - 422
  • [3] Parameter estimation based on stacked regression and evolutionary algorithms
    Hong, X
    Billings, SA
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1999, 146 (05): : 406 - 414
  • [4] Application of genetic algorithms to parameter estimation of bioprocesses
    Park, LJ
    Park, CH
    Park, C
    Lee, T
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1997, 35 (01) : 47 - 49
  • [5] Application of genetic algorithms to parameter estimation of bioprocesses
    L. J. Park
    C. H. Park
    C. Park
    T. Lee
    Medical and Biological Engineering and Computing, 1997, 35 : 47 - 49
  • [6] Application of genetic algorithms to parameter estimation of bioprocesses
    Park, L.J.
    Park, C.H.
    Park, C.
    Lee, T.
    Medical and Biological Engineering and Computing, 1997, 35 (01): : 47 - 49
  • [7] Application of genetic algorithms for aerodynamic parameter estimation
    Qian, Wei-Qi
    Wang, Qing
    Wang, Wen-Zheng
    He, Kai-Feng
    Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2003, 21 (02):
  • [8] A method for parameter calibration and relevance estimation in evolutionary-algorithms
    Nannen, Volker
    Eiben, A. E.
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 183 - +
  • [9] Application of evolutionary programming to transient and subtransient parameter estimation
    Lai, LL
    Ma, JT
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 1996, 11 (03) : 523 - 529
  • [10] Evolutionary Algorithms in Iterative Channel Estimation for MLSD Application
    Studzinski, Dawid
    INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS (ICSES '10): CONFERENCE PROCEEDINGS, 2010, : 311 - 314