Vibrational properties and Raman spectra of different edge graphene nanoribbons, studied by first-principles calculations

被引:13
作者
Hu, Ting [1 ,2 ]
Zhou, Jian [3 ]
Dong, Jinming [1 ,2 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Grp Computat Condensed Matter Phys, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Dept Mat Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
关键词
Vibrational property; Graphene nanoribbon; Polarized Raman spectrum; First-principles calculation; MOLECULAR-DYNAMICS; SPECTROSCOPY; GRAPHITE; STABILITY; METALS;
D O I
10.1016/j.physleta.2012.11.053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The vibrational properties and Raman spectra of graphene nanoribbons with six different edges have been studied by using the first-principles calculations. It is found that edge reconstruction leads to the emergence of localized vibrational modes and new topological defect modes, making the different edges identified by polarized Raman spectra. The radial breathing-like modes are found to be independent of the edge structures, while the G-band-related modes are affected by different edge structures. Our results suggest that the polarized Raman spectrum could be a powerful experimental tool for distinguishing the GNRs with different edge structures due to their different vibrational properties. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:399 / 404
页数:6
相关论文
共 30 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Raman Spectroscopy of Graphene Edges [J].
Casiraghi, C. ;
Hartschuh, A. ;
Qian, H. ;
Piscanec, S. ;
Georgi, C. ;
Fasoli, A. ;
Novoselov, K. S. ;
Basko, D. M. ;
Ferrari, A. C. .
NANO LETTERS, 2009, 9 (04) :1433-1441
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Giant thermoelectric effect in graphene [J].
Dragoman, D. ;
Dragoman, M. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[5]   Stability analysis of graphene nanoribbons by molecular dynamics simulations [J].
Dugan, N. ;
Erkoc, S. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (04) :695-700
[6]   Edge reconstructions induce magnetic and metallic behavior in zigzag graphene nanoribbons [J].
Dutta, Sudipta ;
Pati, Swapan K. .
CARBON, 2010, 48 (15) :4409-4413
[7]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[8]   Raman-active modes in graphene nanoribbons [J].
Gillen, Roland ;
Mohr, Marcel ;
Maultzsch, Janina .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (11-12) :2941-2944
[9]   Graphene at the Edge: Stability and Dynamics [J].
Girit, Caglar Oe ;
Meyer, Jannik C. ;
Erni, Rolf ;
Rossell, Marta D. ;
Kisielowski, C. ;
Yang, Li ;
Park, Cheol-Hwan ;
Crommie, M. F. ;
Cohen, Marvin L. ;
Louie, Steven G. ;
Zettl, A. .
SCIENCE, 2009, 323 (5922) :1705-1708
[10]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)