A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation

被引:450
作者
Li, J. [1 ]
Adewuyi, K. [1 ]
Lotfi, N. [2 ]
Landers, R. G. [1 ]
Park, J. [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65401 USA
[2] Southern Illinois Univ, Dept Mech & Ind Engn, Edwardsville, IL 62026 USA
基金
美国国家科学基金会;
关键词
Single particle model; Capacity degradation; State of health; Power loss; On-line estimation; Battery management systems; CAPACITY FADE; NUMERICAL-SIMULATION; MATHEMATICAL-MODEL; AGING MECHANISMS; STRESS; CHARGE; ELECTROLYTE; MANAGEMENT; EVOLUTION; DISCHARGE;
D O I
10.1016/j.apenergy.2018.01.011
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
State of Health (SOH) estimation of lithium ion batteries is critical for Battery Management Systems (BMSs) in Electric Vehicles (EVs). Many estimation techniques utilize a battery model; however, the model must have high accuracy and high computational efficiency. Conventional electrochemical full-order models can accurately capture battery states, but they are too complex and computationally expensive to be used in a BMS. A Single Particle (SP) model is a good alternative that addresses this issue; however, existing SP models do not consider degradation physics. In this work, an SP-based degradation model is developed by including Solid Electrolyte Interface (SEI) layer formation, coupled with crack propagation due to the stress generated by the volume expansion of the particles in the active materials. A model of lithium ion loss from SEI layer formation is integrated with an advanced SP model that includes electrolytic physics. This low-order model quickly predicts capacity fade and voltage profile changes as a function of cycle number and temperature with high accuracy, allowing for the use of online estimation techniques. Lithium ion loss due to SEI layer formation, increase in battery resistance, and changes in the electrodes' open circuit potential operating windows are examined to account for capacity fade and power loss. In addition to the low-order implementation to facilitate on-line estimation, the model proposed in this paper provides quantitative information regarding SEI layer formation and crack propagation, as well as the resulting battery capacity fade and power dissipation, which are essential for SOH estimation in a BMS.
引用
收藏
页码:1178 / 1190
页数:13
相关论文
共 47 条
[1]   Lithium Ion Battery Anode Aging Mechanisms [J].
Agubra, Victor ;
Fergus, Jeffrey .
MATERIALS, 2013, 6 (04) :1310-1325
[2]  
[Anonymous], 2005, FRACTURE MECH FUNDAM
[3]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[4]   The electrochemical reaction of lithium with tin studied by in situ AFM [J].
Beaulieu, LY ;
Beattie, SD ;
Hatchard, TD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (04) :A419-A424
[5]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[6]   Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation [J].
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF POWER SOURCES, 2009, 190 (02) :453-460
[7]   A mathematical model for the lithium-ion negative electrode solid electrolyte interphase [J].
Christensen, J ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (11) :A1977-A1988
[8]  
Couto LD, 2016, P AMER CONTR CONF, P4022, DOI 10.1109/ACC.2016.7525553
[9]   PHASE-DIAGRAM OF LIXC6 [J].
DAHN, JR .
PHYSICAL REVIEW B, 1991, 44 (17) :9170-9177
[10]  
Delacourt C, 2016, GREEN ENERGY TECHNOL, P151, DOI 10.1007/978-1-4471-5677-2_5