Characterization of Online Junction Temperature of the SiC power MOSFET by Combination of Four TSEPs using Neural Network

被引:0
作者
Sharma, Kanuj [1 ]
Kamm, Simon [2 ]
Baron, Kevin Munoz [1 ]
Kallfass, Ingmar [1 ]
机构
[1] Univ Stuttgart, Inst Robust Power Semicond Syst, Stuttgart, Germany
[2] Univ Stuttgart, Inst Automat & Software Syst, Stuttgart, Germany
来源
2022 24TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'22 ECCE EUROPE) | 2022年
关键词
<< Condition monitoring >>; << Device characterization >>; << TSEP >>; << Silicon carbide >>; << Machine learning >>; << Neural network >>; << Wide bandgap >>;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents an approach to combine multiple temperature-sensitive electrical parameters to improve the accuracy and precision of the junction temperature estimation of power transistors using the example of a silicon-carbide power MOSFET. Switching delays and the threshold voltage of the power transistor during turn-on and -off of a silicon-carbide power transistor are used as temperaturesensitive electrical parameters for the online junction temperature measurements. In order to improve the accuracy, a shallow fully-connected neural network is used as the means to combine the four measurements in one switching cycle of the transistor. The maximum measurement error of the junction temperature of the power transistor is reduced approximately 10-fold from 8.98 K to 0.92 K.
引用
收藏
页数:8
相关论文
共 8 条
[1]  
Avenas Y., 2016, TEMPERATURE MEASUREM, V27, P3081
[2]   Heat Management in Power Converters: From State of the Art to Future Ultrahigh Efficiency Systems [J].
Laloya, Eduardo ;
Lucia, Oscar ;
Sarnago, Hector ;
Burdio, Jose M. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (11) :7896-7908
[3]  
Munoz Baron K., 2020, INT EXH C POW EL INT
[4]  
Qiao L., 2020, IEEE APPL POW EL C E
[5]  
ROHM Semiconductors, 2000, SIC POW MOD BSM120D1
[6]  
Ruthardt J., 2020, IEEE APPL POW EL C E
[7]  
Sharma K., 2021, 2021 IEEE 8 WORKSH W
[8]  
Sood A, 2020, LABOUR ROOM EMERGENCIES, P11, DOI 10.1007/978-981-10-4953-8_2