Numerical investigation on the stabilization of the deceleration phase Rayleigh-Taylor instability due to alpha particle heating in ignition target

被引:26
作者
Fan, Zhengfeng [1 ]
Zhu, Shaoping [1 ]
Pei, Wenbing [1 ]
Ye, Wenhua [1 ]
Li, Meng [1 ]
Xu, Xiaowen [1 ]
Wu, Junfeng [1 ]
Dai, Zhensheng [1 ]
Wang, Lifeng [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
INERTIAL CONFINEMENT FUSION; ABLATION FRONTS; PHYSICS BASIS; DYNAMICS;
D O I
10.1209/0295-5075/99/65003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tritium-hydrogen-deuterium (THD) target is adopted in order to experimentally diagnose the properties of the ignition hot spot and the highly compressed main fusion fuel (Edwards M. J. et al., Phys. Plasmas, 18 (2011) 051003). As compared with deuterium-tritium (DT) target, the thermonuclear alpha particles which are needed to heat the fusion fuel, are much less in the THD target. In the present paper, the effect of alpha particle heating on the deceleration phase Rayleigh-Taylor instability (dp-RTI), which is one of the key problems in hot spot formation, is investigated systematically through numerical simulations. It is found that the mass ablation at the hot spot boundary is greatly increased due to the direct alpha particle heating. As a result, the dp-RTI growth rates are greatly reduced and the cut-off mode number decreases greatly from about 33 to 17. This explains why the hydrodynamic instability in the THD target grows more severely than in the DT ignition target. Copyright (C) EPLA, 2012
引用
收藏
页数:6
相关论文
共 25 条
[1]   Converging geometry Rayleigh-Taylor instability and central ignition of inertial confinement fusion targets [J].
Atzeni, S ;
Schiavi, A ;
Temporal, M .
PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 :B111-B120
[2]  
Atzeni S., 2004, The Physics of Inertial Fusion: Beamplasma Interaction, Hydrodynamics, Hot Dense Matter
[3]   Growth rates of the ablative Rayleigh-Taylor instability in inertial confinement fusion [J].
Betti, R ;
Goncharov, VN ;
McCrory, RL ;
Verdon, CP .
PHYSICS OF PLASMAS, 1998, 5 (05) :1446-1454
[4]   Hot-spot dynamics and deceleration-phase Rayleigh-Taylor instability of imploding inertial confinement fusion capsules [J].
Betti, R ;
Umansky, M ;
Lobatchev, V ;
Goncharov, VN ;
McCrory, RL .
PHYSICS OF PLASMAS, 2001, 8 (12) :5257-5267
[5]   RAYLEIGH-TAYLOR INSTABILITY AND LASER-PELLET FUSION [J].
BODNER, SE .
PHYSICAL REVIEW LETTERS, 1974, 33 (13) :761-764
[6]   Review of indirect-drive ignition design options for the National Ignition Facility [J].
Dittrich, TR ;
Haan, SW ;
Marinak, MM ;
Pollaine, SM ;
Hinkel, DE ;
Munro, DH ;
Verdon, CP ;
Strobel, GL ;
McEachern, R ;
Cook, RC ;
Roberts, CC ;
Wilson, DC ;
Bradley, PA ;
Foreman, LR ;
Varnum, WS .
PHYSICS OF PLASMAS, 1999, 6 (05) :2164-2170
[7]   The experimental plan for cryogenic layered target implosions on the National Ignition Facility-The inertial confinement approach to fusion [J].
Edwards, M. J. ;
Lindl, J. D. ;
Spears, B. K. ;
Weber, S. V. ;
Atherton, L. J. ;
Bleuel, D. L. ;
Bradley, D. K. ;
Callahan, D. A. ;
Cerjan, C. J. ;
Clark, D. ;
Collins, G. W. ;
Fair, J. E. ;
Fortner, R. J. ;
Glenzer, S. H. ;
Haan, S. W. ;
Hammel, B. A. ;
Hamza, A. V. ;
Hatchett, S. P. ;
Izumi, N. ;
Jacoby, B. ;
Jones, O. S. ;
Koch, J. A. ;
Kozioziemski, B. J. ;
Landen, O. L. ;
Lerche, R. ;
MacGowan, B. J. ;
MacKinnon, A. J. ;
Mapoles, E. R. ;
Marinak, M. M. ;
Moran, M. ;
Moses, E. I. ;
Munro, D. H. ;
Schneider, D. H. ;
Sepke, S. M. ;
Shaughnessy, D. A. ;
Springer, P. T. ;
Tommasini, R. ;
Bernstein, L. ;
Stoeffl, W. ;
Betti, R. ;
Boehly, T. R. ;
Sangster, T. C. ;
Glebov, V. Yu. ;
McKenty, P. W. ;
Regan, S. P. ;
Edgell, D. H. ;
Knauer, J. P. ;
Stoeckl, C. ;
Harding, D. R. ;
Batha, S. .
PHYSICS OF PLASMAS, 2011, 18 (05)
[8]   Influence of real gas effects on ablative Rayleigh-Taylor instability in plastic target [J].
Fan, Zhengfeng ;
Xue, Chuang ;
Wang, Lifeng ;
Ye, Wenhua ;
Zhu, Shaoping .
PHYSICS OF PLASMAS, 2011, 18 (06)
[9]   A multiscale analysis of the hotspot dynamics during the deceleration phase of inertial confinement capsules [J].
Garnier, J ;
Cherfils, C .
PHYSICS OF PLASMAS, 2005, 12 (01) :1-4
[10]   Self-consistent stability analysis of ablation fronts with large Froude numbers [J].
Goncharov, VN ;
Betti, R ;
McCrory, RL ;
Sorotokin, P ;
Verdon, CP .
PHYSICS OF PLASMAS, 1996, 3 (04) :1402-1414