A Numerical Analysis on a Solar Chimney with an Integrated Latent Heat Thermal Energy Storage

被引:2
|
作者
Buonomo, Bernardo [1 ]
Capasso, Lucia [1 ]
Diana, Alessandra [1 ]
Manca, Oronzio [1 ]
Nardini, Sergio [1 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dip Ingn Ind & Informaz, Real Casa Annunziata, Via Roma 29, I-81031 Aversa Ce, Italy
来源
74TH ATI NATIONAL CONGRESS: ENERGY CONVERSION: RESEARCH, INNOVATION AND DEVELOPMENT FOR INDUSTRY AND TERRITORIES | 2019年 / 2191卷
关键词
PHASE-CHANGE MATERIAL; PERFORMANCE; PCM; VENTILATION; PARAMETERS; SIMULATION; WALLBOARD; PLATE; FOAM;
D O I
10.1063/1.5138762
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Solar chimney is a solar system which is employed in several applications such as ventilation for thermal comfort, passive solar heating and cooling of buildings, solar energy drying, and electric power generation. It employs solar radiation to raise the temperature of the air and the buoyancy of warm air to accelerate the air stream flowing through the system. It is very important to evaluate the thermal and fluid dynamic behaviors to realize a correct design of the solar chimney also for the case with an integrated thermal energy storage system. It includes height, width and depth of cavity, type of glazing, type of absorber, and inclusion of insulation or thermal mass. Besides these system parameters, other factors such as the location, climate, and orientation can also affect its performance. In this paper, a two-dimensional numerical investigation on a prototypal solar chimney system integrated with an absorbing capacity wall in a south facade of a building is presented. The capacity wall is composed of a high absorbing plate and an assigned thickness of phase change material. The chimney consists of a converging channel with one vertical absorbing wall and the glass plate inclined of 2 with respect to the vertical. The chimney is 5.0 m high, with the channel height equal to 4.0 m, whereas the channel gap is at the inlet equal to 0.34 m and at the outlet it is 0.20 m. The thermal energy storage system is 4.0 high. The transient analysis is carried out on a two-dimensional model in airflow and the governing equations are given in terms of k-s turbulence model. The problem is solved by means of the commercial code Ansys-Fluent. The numerical analysis was intended to evaluate the thermal and fluid dynamic behavior of the solar chimney integrated with a latent thermal energy storage system. Results are given in terms of wall temperature distributions, air velocity and temperature fields and transversal profiles. Thermal and fluid dynamics behaviors are evaluated in order to have some indications to improve the energy conversion system.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A NUMERICAL ANALYSIS ON A SOLAR CHIMNEY WITH AN INTEGRATED THERMAL ENERGY STORAGE WITH PHASE CHANGE MATERIAL
    Buonomo, Bernardo
    Capasso, Lucia
    Fatigati, Angelo
    Manca, Oronzio
    Nardini, Sergio
    PROCEEDINGS OF THE ASME 2020 HEAT TRANSFER SUMMER CONFERENCE (HT2020), 2020,
  • [2] Numerical simulation and parametric analysis of latent heat thermal energy storage system
    Soni, Manoj Kumar
    Tamar, Nisha
    Bhattacharyya, Suvanjan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 141 (06) : 2511 - 2526
  • [3] Analytical analysis of latent heat thermal energy storage model for solar thermal power plants
    Khalid, Muhammad Zeeshan
    Zubair, Muhammad
    Ali, Majid
    Amjad, Qazi Nouman
    PROCEEDINGS OF 2017 14TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2017, : 581 - 593
  • [4] Numerical modeling of latent heat thermal energy storage integrated with heat pump for domestic hot water production
    Inkeri, E.
    Tynjala, T.
    Nikku, M.
    APPLIED THERMAL ENGINEERING, 2022, 214
  • [5] Numerical analysis of latent heat thermal energy storage system
    Vyshak, N. R.
    Jilani, G.
    ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (07) : 2161 - 2168
  • [6] Heat pump integrated with latent heat energy storage
    Xie, Baoshan
    Du, Shuai
    Wang, Ruzhu
    Kou, Xiaoxue
    Jiang, Jiatong
    Li, Chuanchang
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (19) : 6943 - 6973
  • [7] Numerical analysis of latent heat thermal energy storage using encapsulated phase change material for solar thermal power plant
    Bhagat, Kunal
    Saha, Sandip K.
    RENEWABLE ENERGY, 2016, 95 : 323 - 336
  • [8] Thermal performance analysis of a solar energy sourced latent heat storage
    Aydin, Devrim
    Utlu, Zafer
    Kincay, Olcay
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 50 : 1213 - 1225
  • [9] ENERGY AND COST ANALYSIS OF CONCENTRATED SOLAR THERMAL PLANTS INTEGRATED WITH LATENT HEAT THERMAL ENERGY STORAGE FOR THE DECARBONIZATION OF INDUSTRIAL PROCESSES
    Giampietro, Davide
    Stefanizzi, Michele
    Fornarelli, Francesco
    Dambrosio, Lorenzo
    Nicolini, Daniele
    Miliozzi, Adio
    Camporeale, Sergio Mario
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 6, 2024,
  • [10] Thermal analysis of a solar concentrating system integrated with sensible and latent heat storage
    Bhale, Purnanand V.
    Rathod, Manish K.
    Sahoo, Laxmikant
    CLEAN, EFFICIENT AND AFFORDABLE ENERGY FOR A SUSTAINABLE FUTURE, 2015, 75 : 2157 - 2162