PRIMING THE MOTOR CORTEX WITH ANODAL TRANSCRANIAL DIRECT CURRENT STIMULATION AFFECTS THE ACUTE INHIBITORY CORTICOSPINAL RESPONSES TO STRENGTH TRAINING

被引:13
|
作者
Frazer, Ashlyn K. [1 ]
Howatson, Glyn [2 ,3 ]
Ahtiainen, Juha P. [4 ]
Avela, Janne [4 ]
Rantalainen, Timo [4 ,5 ]
Kidgell, Dawson J. [1 ]
机构
[1] Monash Univ, Sch Primary Hlth Care, Fac Med Nursing & Hlth Sci, Dept Physiotherapy, Melbourne, Vic, Australia
[2] Northumbria Univ, Dept Sport Exercise & Rehabil, Newcastle Upon Tyne, Tyne & Wear, England
[3] North West Univ, Sch Biol Sci, Water Res Grp, Potchefstroom, South Africa
[4] Univ Jyvaskyla, Fac Sport & Hlth Sci, Dept Biol & Phys Act, Neuromuscular Res Ctr,Biol & Phys Act, Jyvaskyla, Finland
[5] Univ Jyvaskyla, Fac Sport & Hlth Sci, Dept Biol & Phys Act, Gerontol Res Ctr, Jyvaskyla, Finland
关键词
corticospinal excitability; corticospinal silent period; neuroplasticity; strength exercise; transcranial direct current stimulation; RESISTANCE EXERCISE; EXCITABILITY; ADAPTATIONS; MODULATION; SKILL; TDCS; PLASTICITY;
D O I
10.1519/JSC.0000000000002959
中图分类号
G8 [体育];
学科分类号
04 ; 0403 ;
摘要
Synaptic plasticity in the motor cortex (M1) is associated with strength training (ST) and can be modified by transcranial direct current stimulation (tDCS). The M1 responses to ST increase when anodal tDCS is applied during training due to gating. An additional approach to improve the M1 responses to ST, which has not been explored, is to use anodal tDCS to prime the M1 before a bout of ST. We examined the priming effects of anodal tDCS of M1 on the acute corticospinal responses to ST. In a randomized double-blinded cross-over design, changes in isometric strength, corticospinal excitability, and inhibition (assessed as area under the recruitment curve [AURC] using transcranial magnetic stimulation) were analyzed in 13 adults exposed to 20 minutes of anodal tDCS and sham tDCS followed by a ST session of the right elbow flexors. We observed a significant decrease in isometric elbow-flexor strength immediately after training (11-12%; p < 0.05), which was not different between anodal tDCS and sham tDCS. Transcranial magnetic stimulation revealed a 24% increase in AURC for corticospinal excitability after anodal tDCS and ST; this increase was not different between conditions. However, there was a 14% reduction in AURC for corticospinal inhibition when anodal tDCS was applied before ST when compared with sham tDCS and ST (all p < 0.05). Priming anodal tDCS had a limited effect in facilitating corticospinal excitability after an acute bout of ST. Interestingly, the interaction of anodal tDCS and ST seems to affect the excitability of intracortical inhibitory circuits of the M1 through nonhomeostatic mechanisms.
引用
收藏
页码:307 / 317
页数:11
相关论文
共 50 条
  • [31] Concurrent anodal transcranial direct-current stimulation and motor task to influence sensorimotor cortex activation
    Besson, Pierre
    Muthalib, Makii
    Dray, Gerard
    Rothwell, John
    Perrey, Stephane
    BRAIN RESEARCH, 2019, 1710 : 181 - 187
  • [32] Transcranial direct current stimulation: before, during, or after motor training?
    Cabral, Maria E.
    Baltar, Adriana
    Borba, Rebeka
    Galvao, Silvana
    Santos, Luciana
    Fregni, Felipe
    Monte-Silva, Katia
    NEUROREPORT, 2015, 26 (11) : 618 - 622
  • [33] Anodal Transcranial Direct Current Stimulation (tDCS) Over the Motor Cortex Increases Sympathetic Nerve Activity
    Clancy, Jennifer A.
    Johnson, Robyn
    Raw, Rachael
    Deuchars, Susan A.
    Deuchars, Jim
    BRAIN STIMULATION, 2014, 7 (01) : 97 - 104
  • [34] Anodal Transcranial Direct Current Stimulation of the motor cortex reduces chronic pain in Alcock canal syndrome
    Ricci, Raffaella
    Ghiggia, Ada
    La Rosa, Ilenia
    Milano, Azzurra
    Troni, Walter
    George, Mark S.
    Borckardt, Jeffrey J.
    Castelli, Lorys
    Salatino, Adriana
    BRAIN STIMULATION, 2018, 11 (03) : 648 - 650
  • [35] Enhancing spatial reasoning by anodal transcranial direct current stimulation over the right posterior parietal cortex
    Wertheim, Julia
    Colzato, Lorenza S.
    Nitsche, Michael A.
    Ragni, Marco
    EXPERIMENTAL BRAIN RESEARCH, 2020, 238 (01) : 181 - 192
  • [36] Transcranial direct current stimulation over the primary motor cortex during fMRI
    Antal, Andrea
    Polania, Rafael
    Schmidt-Samoa, Carsten
    Dechent, Peter
    Paulus, Walter
    NEUROIMAGE, 2011, 55 (02) : 590 - 596
  • [37] Enhancing Motor Performance by Anodal Transcranial Direct Current Stimulation in Subacute Stroke Patients
    Kim, Deog Young
    Ohn, Suk Hoon
    Yang, Eun Joo
    Park, Chang-Il
    Jung, Kang Jae
    AMERICAN JOURNAL OF PHYSICAL MEDICINE & REHABILITATION, 2009, 88 (10) : 829 - 836
  • [38] Transcranial direct current stimulation and transcranial random noise stimulation over the cerebellum differentially affect the cerebellum and primary motor cortex pathway
    Kawakami, Saki
    Inukai, Yasuto
    Ikarashi, Hitomi
    Watanabe, Hiraku
    Miyaguchi, Shota
    Otsuru, Naofumi
    Onishi, Hideaki
    JOURNAL OF CLINICAL NEUROSCIENCE, 2022, 100 : 59 - 65
  • [39] Anodal transcranial direct current stimulation enhances the effects of motor imagery training in a finger tapping task
    Saimpont, Arnaud
    Mercier, Catherine
    Malouin, Francine
    Guillot, Aymeric
    Collet, Christian
    Doyon, Julien
    Jackson, Philip L.
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2016, 43 (01) : 113 - 119
  • [40] Anodal transcranial direct current stimulation enhances strength training volume but not the force-velocity profile
    Alix-Fages, Carlos
    Garcia-Ramos, Amador
    Calderon-Nadal, Giancarlo
    Colomer-Poveda, David
    Romero-Arenas, Salvador
    Fernandez-del-Olmo, Miguel
    Marquez, Gonzalo
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2020, 120 (08) : 1881 - 1891