Multidimensional local false discovery rate for microarray studies

被引:63
作者
Ploner, A [1 ]
Calza, S
Gusnanto, A
Pawitan, Y
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, S-17177 Stockholm, Sweden
[2] Univ Brescia, Dipartimento Sci Biomed & Biotecnol, I-25123 Brescia, Italy
[3] Inst Publ Hlth, MRC, Biostat Unit, Cambridge CB2 2SR, England
关键词
D O I
10.1093/bioinformatics/btk013
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The false discovery rate (fdr) is a key tool for statistical assessment of differential expression (DE) in microarray studies. Overall control of the fdr alone, however, is not sufficient to address the problem of genes with small variance, which generally suffer from a disproportionally high rate of false positives. It is desirable to have an fdr-controlling procedure that automatically accounts for gene variability. Methods: We generalize the local fdr as a function of multiple statistics, combining a common test statistic for assessing DE with its standard error information. We use a non-parametric mixture model for DE and non-DE genes to describe the observed multi-dimensional statistics, and estimate the distribution for non-DE genes via the permutation method. We demonstrate this fdr2d approach for simulated and real microarray data. Results: The fdr2d allows objective assessment of DE as a function of gene variability. We also show that the fdr2d performs better than commonly used modified test statistics. Availability: An R-package OCplus containing functions for computing fdr2d() and other operating characteristics of microarray data is available at http://www.meb.ki.se/similar to yudpaw Contact: alexander.ploner@meb.ki.se.
引用
收藏
页码:556 / 565
页数:10
相关论文
共 18 条
[1]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[2]   A simple procedure for estimating the false discovery rate [J].
Dalmasso, C ;
Broët, P ;
Moreau, T .
BIOINFORMATICS, 2005, 21 (05) :660-668
[3]   Empirical Bayes analysis of a microarray experiment [J].
Efron, B ;
Tibshirani, R ;
Storey, JD ;
Tusher, V .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1151-1160
[4]   Gene-expression profiles in hereditary breast cancer. [J].
Hedenfalk, I ;
Duggan, D ;
Chen, YD ;
Radmacher, M ;
Bittner, M ;
Simon, R ;
Meltzer, P ;
Gusterson, B ;
Esteller, M ;
Kallioniemi, OP ;
Wilfond, B ;
Borg, Å ;
Trent, J ;
Raffeld, M ;
Yakhini, Z ;
Ben-Dor, A ;
Dougherty, E ;
Kononen, J ;
Bubendorf, L ;
Fehrle, W ;
Pittaluga, S ;
Gruvberger, S ;
Loman, N ;
Johannsoson, O ;
Olsson, H ;
Sauter, G .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 344 (08) :539-548
[5]  
Lehmann E.L., 1986, Testing Statistical Hypotheses
[6]  
Lönnstedt I, 2002, STAT SINICA, V12, P31
[7]   Detecting differential gene expression with a semiparametric hierarchical mixture method [J].
Newton, MA ;
Noueiry, A ;
Sarkar, D ;
Ahlquist, P .
BIOSTATISTICS, 2004, 5 (02) :155-176
[8]   Bias in the estimation of false discovery rate in microarray studies [J].
Pawitan, Y ;
Murthy, KRK ;
Michiels, S ;
Ploner, A .
BIOINFORMATICS, 2005, 21 (20) :3865-3872
[9]   False discovery rate, sensitivity and sample size for microarray studies [J].
Pawitan, Y ;
Michiels, S ;
Koscielny, S ;
Gusnanto, A ;
Ploner, A .
BIOINFORMATICS, 2005, 21 (13) :3017-3024
[10]  
Pawitan Y., 2001, all Likelihood: Statistical Modelling and Inference Using Likelihood