Resource augmentation in two-dimensional packing with orthogonal rotations

被引:10
作者
Correa, JR [1 ]
机构
[1] Univ Adolfo Ibanez, Sch Business, Santiago, Chile
关键词
bin packing; approximation algorithms; polynomial time approximation schemes;
D O I
10.1016/j.orl.2005.02.005
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the problem of packing two-dimensional rectangles into the minimum number of unit squares, when 90 degrees rotations are allowed. Our main contribution is a polynomial-time algorithm for packing rectangles into at most OPT bins whose sides have length (1 + epsilon), for any positive e. Additionally, we show near-optimal packing results for a number of related packing problems. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:85 / 93
页数:9
相关论文
共 16 条
[1]   A 5-4 ALGORITHM FOR TWO-DIMENSIONAL PACKING [J].
BAKER, BS ;
BROWN, DJ ;
KATSEFF, HP .
JOURNAL OF ALGORITHMS, 1981, 2 (04) :348-368
[2]  
BANSAL N, 2004, P 15 ANN ACM SIAM S, P189
[3]  
BANSAL N, 2004, BIN PACKING MULT NOV
[4]  
Caprara A, 2002, ANN IEEE SYMP FOUND, P490, DOI 10.1109/SFCS.2002.1181973
[5]  
COFFMAN EG, 1980, SIAM J COMPUT, V9, P808, DOI 10.1137/0209062
[6]  
CORREA JR, 2004, P 15 ACM SIAM S DISC, P179
[7]  
EPSTEIN L, 2004, IN PRESS P 2 WORKSH
[8]  
Ferreira C.E., 1999, PESQUISA OPERATIONAL, V19, P223
[9]   A near-optimal solution to a two-dimensional cutting stock problem [J].
Kenyon, C ;
Rémila, E .
MATHEMATICS OF OPERATIONS RESEARCH, 2000, 25 (04) :645-656
[10]  
KENYON C, 2003, COMMUNICATION OCT