Porous carbon-coated NaTi2(PO4)3 with superior rate and low-temperature properties

被引:57
作者
Hu, Qiao [1 ]
Yu, Mufan [1 ]
Liao, Jiaying [1 ]
Wen, Zhaoyin [2 ]
Chen, Chunhua [1 ]
机构
[1] Univ Sci & Technol China, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
基金
美国国家科学基金会;
关键词
SODIUM-ION BATTERIES; GRAPHENE; STORAGE; NA3V2(PO4)(3); CHEMISTRY;
D O I
10.1039/c7ta10207k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanosized porous carbon-coated NaTi2(PO4)(3) (NTP) particles with superior rate and low-temperature properties are synthesized by a hydrothermal process combined with different carbon coating steps. Their structures and electrochemical performances are analyzed by X-ray diffraction, scanning/transmission electron microscopies, Raman spectroscopy, N-2 adsorption/desorption measurement and galvanostatic cell cycling. The optimized carbon-coated NTP sample NTP@C-2 shows superb rate performance with a charge capacity of 110.9 mA h g(-1) at 30C rate, i.e. 97.0% retention of its capacity at 0.5C. After 1000 cycles at 10C, the reversible capacity can still reach 105.6 mA h g(-1) with a very slow capacity decay of 0.0022% per cycle. Even at -20 degrees C, NTP@C-2 can still deliver a capacity of 97.6 mA h g(-1) at 10C and 61.1 mA h g(-1) at 20C. These excellent electrochemical performances can be attributed to both the nanosized porous architecture and the highly graphitic carbon coating. The use of a small amount of Na3V2(PO4)(3) intermediate powder accounts for the formation of more sp(2)-type carbon coating. Such an NTP powder provides a promising anode material for high power sodium-ion batteries.
引用
收藏
页码:2365 / 2370
页数:6
相关论文
共 20 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[3]   Porous Na3V2(PO4)3@C nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries [J].
Fang, Junqi ;
Wang, Suqing ;
Li, Zhitong ;
Chen, Hongbin ;
Xia, Lu ;
Ding, Liangxin ;
Wang, Haihui .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (04) :1180-1185
[4]   3D Graphene Decorated NaTi2(PO4)3 Microspheres as a Superior High-Rate and Ultracycle-Stable Anode Material for Sodium Ion Batteries [J].
Fang, Yongjin ;
Xiao, Lifen ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Ai, Xinping ;
Huang, Yunhui ;
Yang, Hanxi .
ADVANCED ENERGY MATERIALS, 2016, 6 (19)
[5]   Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High-Rate and Extended Lifespan Cathode for Sodium-Ion Batteries [J].
Fang, Yongjin ;
Xiao, Lifen ;
Ai, Xinping ;
Cao, Yuliang ;
Yang, Hanxi .
ADVANCED MATERIALS, 2015, 27 (39) :5895-5900
[6]   In situ catalytic formation of graphene decoration on Na3V2(PO4)3 particles for ultrafast and long-life sodium storage [J].
Hu, Qiao ;
Liao, Jia-Ying ;
Zou, Bang-Kun ;
Wang, He-Yang ;
Chen, Chun-Hua .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (43) :16801-16804
[7]   Highly Reversible Sodium-ion Storage in NaTi2(PO4)3/C Composite Nanofibers [J].
Li, Min ;
Liu, Li ;
Wang, Peiqi ;
Li, Jiangyu ;
Leng, Qianyi ;
Cao, Guozhong .
ELECTROCHIMICA ACTA, 2017, 252 :523-531
[8]   Graphene-Supported NaTi2(PO4)3 as a High Rate Anode Material for Aqueous Sodium Ion Batteries [J].
Li, Xiaona ;
Zhu, Xiaobo ;
Liang, Jianwen ;
Hou, Zhiguo ;
Wang, Yan ;
Lin, Ning ;
Zhu, Yongchun ;
Qian, Yitai .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) :A1181-A1187
[9]   Towards High Power High Energy Aqueous Sodium-Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System [J].
Li, Zheng ;
Young, David ;
Xiang, Kai ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED ENERGY MATERIALS, 2013, 3 (03) :290-294
[10]   Role of Binders in High Temperature PEMFC Electrode [J].
Park, J. O. ;
Kwon, K. ;
Cho, M. D. ;
Hong, S. -G. ;
Kim, T. Y. ;
Yoo, D. Y. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (06) :B675-B681