Connectivity through bounds for the Castelnuovo-Mumford regularity

被引:0
作者
Balletti, Gabriele [1 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
关键词
Connectivity; Pseudomanifold graph; Simplicial pseudomanifold; Castelnuovo-Mumford regularity; GRAPHS; DIMENSION;
D O I
10.1016/j.jcta.2016.11.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we generalize and unify two results on connectivity of graphs: one by Balinsky and Barnette, one by Athanasiadis. This is done through a simple proof using commutative algebra tools. In particular we use bounds for the Castelnuovo-Mumford regularity of their Stanley-Reisner rings. As a result, if Delta is a simplicial d-pseudomanifold and s is the largest integer such that A has a missing face of size s, then the 1-skeleton of Delta is inverted right perpendicular(s)/((s+1)d)inverted left perpendicular-connected. We also show that this value is tight. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 54
页数:9
相关论文
共 13 条
  • [1] Connectivity of pseudomanifold graphs from an algebraic point of view
    Adiprasito, Karim A.
    Goodarzi, Afshin
    Varbaro, Matteo
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (12) : 1061 - 1065
  • [2] [Anonymous], 1961, Pacific J. Math., DOI 10.2140/pjm.1961.11.431
  • [3] Some combinatorial properties of flag simplicial pseudomanifolds and spheres
    Athanasiadis, Christos A.
    [J]. ARKIV FOR MATEMATIK, 2011, 49 (01): : 17 - 29
  • [4] DECOMPOSITIONS OF HOMOLOGY MANIFOLDS AND THEIR GRAPHS
    BARNETTE, D
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1982, 41 (03) : 203 - 212
  • [5] Bayer D, 1998, MATH RES LETT, V5, P31
  • [6] ON THE CONNECTIVITY OF MANIFOLD GRAPHS
    Bjorner, Anders
    Vorwerk, Kathrin
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (10) : 4123 - 4132
  • [7] Bounds on the regularity and projective dimension of ideals associated to graphs
    Dao, Hailong
    Huneke, Craig
    Schweig, Jay
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (01) : 37 - 55
  • [8] Restricting linear syzygies: algebra and geometry
    Eisenbud, D
    Green, M
    Hulek, K
    Popescu, S
    [J]. COMPOSITIO MATHEMATICA, 2005, 141 (06) : 1460 - 1478
  • [9] Hochster Melvin, 1977, LECT NOTES PURE APPL, VII, P171
  • [10] Hyperbolic Coxeter groups of large dimension
    Januszkiewicz, T
    Swiatkowski, J
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (03) : 555 - 583