Accumulation of 8-hydroxy-2′-deoxyguanosine and mitochondrial DNA deletion in kidney of diabetic rats

被引:179
作者
Kakimoto, M [1 ]
Inoguchi, T [1 ]
Sonta, T [1 ]
Yu, HY [1 ]
Imamura, M [1 ]
Etoh, T [1 ]
Hashimoto, T [1 ]
Nawata, H [1 ]
机构
[1] Kyushu Univ, Grad Sch Med Sci, Dept med & Bioregulat Sci, Fukuoka 8128582, Japan
关键词
D O I
10.2337/diabetes.51.5.1588
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Oxidative stress may contribute to the pathogenesis of diabetic nephropathy. However, the detailed molecular mechanism remains uncertain. Here, we report oxidative mitochondrial DNA (mtDNA) damage and accumulation of mtDNA with a 4,834-bp deletion in kidney of streptozotocin-induced diabetic rats. At 8 weeks after the onset of diabetes, levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), which is a marker of oxidative DNA damage, were significantly increased in mtDNA from kidney of diabetic rats but not in nuclear DNA, suggesting the predominant damage of mtDNA. Semi-quantitative analysis using PCR showed that the frequency of 4,834-bp deleted mtDNA was markedly increased in kidney of diabetic rats at 8 weeks, but it did not change at 4 weeks. Intervention by insulin treatment starting at 8 weeks rapidly normalized an increase in renal 8-OHdG levels of diabetic rats, but it did not reverse an increase in the frequency of deleted mtDNA. Our study demonstrated for the first time that oxidative mtDNA damage and subsequent mtDNA deletion may be accumulated in kidney of diabetic rats. This may be Involved in the pathogenesis of diabetic nephropathy.
引用
收藏
页码:1588 / 1595
页数:8
相关论文
共 47 条
[1]   Homogenous repair of singlet oxygen-induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA [J].
Anson, RM ;
Croteau, DL ;
Stierum, RH ;
Filburn, C ;
Parsell, R ;
Bohr, VA .
NUCLEIC ACIDS RESEARCH, 1998, 26 (02) :662-668
[2]   Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle [J].
Aspnes, LE ;
Lee, CM ;
Weindruch, R ;
Chung, SS ;
Roecker, EB ;
Aiken, JM .
FASEB JOURNAL, 1997, 11 (07) :573-581
[3]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[4]  
BROWNLEE M, 1988, NEW ENGL J MED, V318, P1315
[5]   ASSOCIATION OF MITOCHONDRIAL-DNA DAMAGE WITH AGING AND CORONARY ATHEROSCLEROTIC HEART-DISEASE [J].
CORRALDEBRINSKI, M ;
SHOFFNER, JM ;
LOTT, MT ;
WALLACE, DC .
MUTATION RESEARCH, 1992, 275 (3-6) :169-180
[6]   MITOCHONDRIAL-DNA DELETIONS IN HUMAN BRAIN - REGIONAL VARIABILITY AND INCREASE WITH ADVANCED AGE [J].
CORRALDEBRINSKI, M ;
HORTON, T ;
LOTT, MT ;
SHOFFNER, JM ;
BEAL, MF ;
WALLACE, DC .
NATURE GENETICS, 1992, 2 (04) :324-329
[7]   A PATTERN OF ACCUMULATION OF A SOMATIC DELETION OF MITOCHONDRIAL-DNA IN AGING HUMAN TISSUES [J].
CORTOPASSI, GA ;
SHIBATA, D ;
SOONG, NW ;
ARNHEIM, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (16) :7370-7374
[8]   PROTEIN KINASE-C IS ACTIVATED IN GLOMERULI FROM STREPTOZOTOCIN DIABETIC RATS - POSSIBLE MEDIATION BY GLUCOSE [J].
CRAVEN, PA ;
DERUBERTIS, FR .
JOURNAL OF CLINICAL INVESTIGATION, 1989, 83 (05) :1667-1675
[9]   Oxidative damage to DNA in diabetes mellitus [J].
Dandona, P ;
Thusu, K ;
Cook, S ;
Snyder, B ;
Makowski, J ;
Armstrong, D ;
Nicotera, T .
LANCET, 1996, 347 (8999) :444-445
[10]   RETRACTED: Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease (Retracted Article) [J].
Davis, RE ;
Miller, S ;
Herrnstadt, C ;
Ghosh, SS ;
Fahy, E ;
Shinobu, LA ;
Galasko, D ;
Thal, LJ ;
Beal, MF ;
Howell, N ;
Parker, WD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (09) :4526-4531