Synthesis and TSL properties of SnO2:Eu nanophosphor for high gamma dosimetry

被引:18
作者
Bhadane, Mahesh S. [1 ]
Dahiwale, S. S. [1 ]
Sature, K. R. [1 ]
Patil, B. J. [2 ]
Mandlik, N. T. [3 ]
Bhoraskar, V. N. [1 ]
Dhole, S. D. [1 ]
机构
[1] Savitribai Phule Pune Univ, Dept Phys, Microtron Accelerator Lab, Pune 411007, Maharashtra, India
[2] Abasaheb Garware Coll, Dept Phys, Pune 411004, Maharashtra, India
[3] Fergusson Coll, Dept Phys, Pune 411004, Maharashtra, India
关键词
TSL; Co-60-gamma rays; Dosimetry; Hydrothermal method; SnO2:Eu; Nanophosphor; THERMOLUMINESCENCE DOSIMETRY; LUMINESCENT PROPERTIES; NANOPARTICLES; EU3+;
D O I
10.1016/j.jallcom.2016.11.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Europium (Eu) doped tin oxide (SnO2) nanoform was synthesized using simple hydrothermal method. The synthesized nanophosphor is found to possess tetragonal structure having particle size of about 30 -35 nm. Interplanner spacing of around 0.337 nm representing an (110) plane of the tetragonal structure has been observed using TEM, which is in agreement with the XRD results. FTIR showed a presence of a number of functional groups including O-H, C = O, C-H, O-Sn-O. A temperature-dependent weight loss-gain was analyzed using TGA-DTG. Studies of Thermally Stimulated Luminescence (TSL) properties showed a glow curve containing three distinct peaks. Good linear response was observed for higher intensity peak for a gamma dose ranging from 1 kGy to 20 kGy with less fading. Thus, the studied SnO2: Eu nanophosphor is as an excellent material for high gamma dosimetry applications. Moreover, the activation energy, order of kinetics, figure of merit have been evaluated using CGCD simulation of TSL glow curve. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1918 / 1923
页数:6
相关论文
共 36 条
[1]   Thermoluminescence investigation of sol-gel derived and γ-irradiated SnO2:Eu3+ nanoparticles [J].
Bajpai, Namrata ;
Khan, S. A. ;
Kher, R. S. ;
Bramhe, Namita ;
Dhoble, S. J. ;
Tiwari, Ashish .
JOURNAL OF LUMINESCENCE, 2014, 145 :940-943
[2]   Plastic scintillation dosimetry and its application to radiotherapy [J].
Beddar, A. S. .
RADIATION MEASUREMENTS, 2006, 41 :S124-S133
[3]   CaSO4:Dy microphosphor for thermal neutron dosimetry [J].
Bhadane, Mahesh S. ;
Mandlik, Nandkumar ;
Patil, B. J. ;
Dahiwale, S. S. ;
Sature, K. R. ;
Bhoraskar, V. N. ;
Dhole, S. D. .
JOURNAL OF LUMINESCENCE, 2016, 170 :226-230
[4]  
Bhatt B.C., 2013, INT J LUMIN APPL, V3, P6
[5]   THERMOLUMINESCENCE DOSIMETRY - ENVIRONMENTAL MONITORING NEAR NUCLEAR-REACTOR SITES [J].
BURKE, GDP .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1976, 23 (03) :1224-1236
[6]   LUMINESCENCE AND CHARGE COMPENSATION IN SNO2-TB3+ [J].
CRABTREE, DF .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1975, 8 (17) :2097-2102
[7]   Luminescent properties of transparent nanostructured Eu3+ doped SnO2-SiO2 glass-ceramics prepared by the sol-gel method [J].
Del Castillo, J ;
Rodríguez, VD ;
Yanes, AC ;
Méndez-Ramos, J ;
Torres, ME .
NANOTECHNOLOGY, 2005, 16 (05) :S300-S303
[8]   Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol-gel silica glasses [J].
del-Castillo, Javier ;
Rodriguez, V. D. ;
Yanes, A. C. ;
Mendez-Ramos, J. .
JOURNAL OF NANOPARTICLE RESEARCH, 2008, 10 (03) :499-506
[9]  
Feh I., 1981, ADV SPACE RES, V1, P61
[10]   Comparison between two combustion routes for the synthesis of nanocrystalline SnO2 powders [J].
Fraigi, LB ;
Lamas, DG ;
de Reca, NEW .
MATERIALS LETTERS, 2001, 47 (4-5) :262-266