Numerical integration of perturbed linear systems

被引:4
作者
Martin, P
Ferrandiz, JM
机构
[1] Univ Valladolid, ETS Ingn Ind, Dept Matemat Aplicada Ingn, E-47011 Valladolid, Spain
[2] Univ Alicante, Dept Anal Matemat & Matemat Aplicada, E-03080 Alicante, Spain
关键词
multistep methods; perturbed problems;
D O I
10.1016/S0168-9274(98)00126-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Martin and Ferrandiz modified Scheifele method for the integration of perturbed oscillators, converting it into a multistep scheme that conserves the good properties of Scheifele method while avoiding the preliminary calculations that it requires. In this article the same modification applied to Scheifele method for perturbed linear systems is presented. The principal properties of the multistep methods obtained are studied and some numerical examples are presented to illustrate the behavior of the new methods, (C) 1999 Elsevier Science B.V. and IMACS. All rights reserved.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 7 条
[1]  
[Anonymous], 1973, ANAL DISCRETIZATION, DOI DOI 10.1007/978-3-642-65471-8
[2]  
FAIREN V, 1994, COMPUT PHYS, V8, P455
[3]   STABILITY OF MULTISTEP-METHODS ON VARIABLE GRIDS [J].
GRIGORIEFF, RD .
NUMERISCHE MATHEMATIK, 1983, 42 (03) :359-377
[4]   Multistep numerical methods based on the Scheifele G-functions with application to satellite dynamics [J].
Martin, P ;
Ferrandiz, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) :359-375
[5]   Behaviour of the SMF method for the numerical integration of satellite orbits [J].
Martin, P ;
Ferrandiz, JM .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1995, 63 (01) :29-40
[6]   NUMERICAL INTEGRATION OF PERTURBED LINEAR OSCILLATING SYSTEMS [J].
SCHEIFELE, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1971, 22 (01) :186-+
[7]  
Stiefel E.L., 1971, Linear and Regular Celestial Mechanics, DOI DOI 10.1007/978-3-642-65027-7