The chemical versatility of the β-α-β fold: Catalytic promiscuity and divergent evolution in the tautomerase superfamily

被引:75
作者
Poelarends, G. J. [2 ]
Veetil, V. Puthan [2 ]
Whitman, C. P. [1 ]
机构
[1] Univ Texas Austin, Coll Pharm, Div Med Chem, Austin, TX 78712 USA
[2] Univ Groningen, Groningen Res Inst Pharm, Dept Pharmaceut Biol, NL-9713 AV Groningen, Netherlands
关键词
Tautomerase superfamily; divergent evolution; catalytic promiscuity;
D O I
10.1007/s00018-008-8285-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tautomerase superfamily members have an amino-terminal proline and a beta-alpha-beta fold, and include 4-oxalocrotonate tautomerase (4-OT), 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI), trans- and cis-3-chloroacrylic acid dehalogenase (CaaD and cis-CaaD, respectively), malonate semialdehyde decarboxylase (MSAD), and macrophage migration inhibitory factor (MIF), which exhibits a phenylpyruvate tautomerase (PPT) activity. Pro-1 is a base (4-OT, CHMI, the PPT activity of MIF) or an acid (CaaD, cis-CaaD, MSAD). Components of the catalytic machinery have been identified and mechanistic hypotheses formulated. Characterization of new homologues shows that these mechanisms are incomplete. 4-OT, CaaD, cis-CaaD, and MSAD also have promiscuous activities with a hydratase activity in CaaD, cis-CaaD, and MSAD, PPT activity in CaaD and cis-CaaD, and CaaD and cis-CaaD activities in 4-OT. The shared promiscuous activities provide evidence for divergent evolution from a common ancestor, give hints about mechanistic relationships, and implicate catalytic promiscuity in the emergence of new enzymes.
引用
收藏
页码:3606 / 3618
页数:13
相关论文
共 57 条
[1]   The 'evolvability' of promiscuous protein functions [J].
Aharoni, A ;
Gaidukov, L ;
Khersonsky, O ;
Gould, SM ;
Roodveldt, C ;
Tawfik, DS .
NATURE GENETICS, 2005, 37 (01) :73-76
[2]   Crystal structures of the wild-type, P1A mutant, and inactivated malonate semialdehyde decarboxylase: A structural basis for the decarboxylase and hydratase activities [J].
Almrud, JJ ;
Poelarends, GJ ;
Johnson, WH ;
Serrano, H ;
Hackert, ML ;
Whitman, CP .
BIOCHEMISTRY, 2005, 44 (45) :14818-14827
[3]   The crystal structure of YdcE, a 4-oxalocrotonate tautomerase homologue from Escherichia coli, confirms the structural basis for oligomer diversity [J].
Almrud, JJ ;
Kern, AD ;
Wang, SC ;
Czerwinski, RM ;
Johnson, WH ;
Murzin, AG ;
Hackert, ML ;
Whitman, CP .
BIOCHEMISTRY, 2002, 41 (40) :12010-12024
[4]   The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase:: A kinetic, NMR, and mutational analysis [J].
Azurmendi, HF ;
Wang, SC ;
Massiah, MA ;
Poelarends, GJ ;
Whitman, CP ;
Mildvan, AS .
BIOCHEMISTRY, 2004, 43 (14) :4082-4091
[5]  
Babbitt PC, 2001, ADV PROTEIN CHEM, V55, P1, DOI 10.1016/S0065-3233(01)55001-9
[6]   Understanding enzyme superfamilies - Chemistry as the fundamental determinant in the evolution of new catalytic activities [J].
Babbitt, PC ;
Gerlt, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (49) :30591-30594
[7]  
CHEN LH, 1992, J BIOL CHEM, V267, P17716
[8]   Enzymes with extra talents: moonlighting functions and catalytic promiscuity [J].
Copley, SD .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (02) :265-272
[9]   Crystal structures of native and inactivated cis-3-chloroacrylic acid dehalogenase -: Structural basis for substrate specificity and inactivation by (R)-oxirane-2-carboxylate [J].
de Jong, Rene M. ;
Bazzacco, Paola ;
Poelarends, Gerrit J. ;
Johnson, William H., Jr. ;
Kim, Yoon Jae ;
Burks, Elizabeth A. ;
Serrano, Hector ;
Thunnissen, Andy-Mark W. H. ;
Whitman, Christian P. ;
Dijkstra, Bauke W. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (04) :2440-2449
[10]   The X-ray structure of trans-3-chloroacrylic acid dehalogenase reveals a novel hydration mechanism in the tautomerase superfamily [J].
de Jong, RM ;
Brugman, W ;
Poelarends, GJ ;
Whitman, CP ;
Dijkstra, BW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (12) :11546-11552