MORE INEQUALITIES FOR POSITIVE LINEAR MAPS

被引:4
作者
Sharma, R. [1 ]
Thakur, A. [1 ]
机构
[1] HP Univ, Dept Math, Shimla 171005 5, Himachal Prades, India
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2013年 / 7卷 / 01期
关键词
linear maps; variance; Chebyshev's inequality; Schwarz's inequality;
D O I
10.7153/jmi-07-01
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive inequalities for the norm of the variance of matrices. It is shown that unital linear maps on 2 x 2 matrices preserve the commutativity properties of matrices. This feature allows us to generalize several inequalities for such maps. We show by way of an example that this technique cannot be extended to the case of n x n, n >= 3, matrices.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 8 条
[1]  
Bhatia R, 2007, PRINC SER APPL MATH, P1
[2]   A better bound on the variance [J].
Bhatia, R ;
Davis, C .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (04) :353-357
[3]  
Bhatia R., 2013, MATRIX ANAL
[4]   The matrix arithmetic-geometric mean inequality revisited [J].
Bhatia, Rajendra ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (8-9) :2177-2191
[5]   Some inequalities for positive linear maps [J].
Bhatia, Rajendra ;
Sharma, Rajesh .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (06) :1562-1571
[6]   An asymmetric Kadison's inequality [J].
Bourin, Jean-Christophe ;
Ricard, Eric .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (03) :499-510
[7]   SCHWARZ INEQUALITY FOR POSITIVE LINEAR MAPS ON C-STAR-ALGEBRAS [J].
CHOI, MD .
ILLINOIS JOURNAL OF MATHEMATICS, 1974, 18 (04) :565-574
[8]   A GENERALIZED SCHWARZ INEQUALITY AND ALGEBRAIC INVARIANTS FOR OPERATOR ALGEBRAS [J].
KADISON, RV .
ANNALS OF MATHEMATICS, 1952, 56 (03) :494-503