Higher-order convergence with fractional-step method for singularly perturbed 2D parabolic convection-diffusion problems on Shishkin mesh

被引:16
作者
Das, Abhishek [1 ]
Natesan, Srinivasan [2 ]
机构
[1] ICFAI Univ, Faulty Sci & Technol, Tripura Campus, Agartala, Tripura, India
[2] Indian Inst Technol, Dept Math, Gauhati 781039, India
关键词
Singularly perturbed 2D parabolic convection-diffusion problems; Fractional-step method; Finite difference scheme; Piecewise-uniform Shishkin meshes; Richardson extrapolation technique; Uniform convergence; RICHARDSON EXTRAPOLATION; SCHEME;
D O I
10.1016/j.camwa.2017.12.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we propose a second-order uniformly convergent numerical method for a singularly perturbed 2D parabolic convection-diffusion initial-boundary-value problem. First, we use a fractional-step method to discretize the time derivative of the continuous problem on uniform mesh in the temporal direction, which gives a set of two ID problems. Then, we use the classical finite difference scheme to discretize those 1D problems on a special mesh, which results almost first-order convergence, i.e., O(N-1+beta ln N + Delta t). To enhance the order of convergence to O(N-2+beta ln(2)N + Delta t(2)), we use the Richardson extrapolation technique. In support of the theoretical results, numerical experiments are performed by employing the proposed technique. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2387 / 2403
页数:17
相关论文
共 17 条
[1]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[2]   A high order uniformly convergent alternating direction scheme for time dependent reaction-diffusion singularly perturbed problems [J].
Bujanda, B. ;
Clavero, C. ;
Gracia, J. L. ;
Jorge, J. C. .
NUMERISCHE MATHEMATIK, 2007, 107 (01) :1-25
[3]   Another uniform convergence analysis technique of some numerical methods for parabolic singularly perturbed problems [J].
Clavero, C. ;
Jorge, J. C. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (03) :222-235
[4]   A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F ;
Shishkin, GI .
APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) :211-231
[5]  
Das A., INT J COMPUT MATH
[6]   Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh [J].
Das, Abhishek ;
Natesan, Srinivasan .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 :168-186
[7]  
Deb BS, 2008, CMES-COMP MODEL ENG, V38, P179
[8]  
Farrell P.A., 2000, Applied Mathematics (Boca Raton)
[9]   Asymptotic analysis and Shishkin-type decomposition for an elliptic convection-diffusion problem [J].
Linss, T ;
Stynes, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 261 (02) :604-632
[10]  
Miller JJH., 2012, FITTED NUMERICAL MET, VRev, DOI DOI 10.1142/8410