New bounds on local strain fields inside random heterogeneous materials

被引:2
作者
Alali, Bacim [1 ]
Lipton, Robert [2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
Random heterogeneous materials; Strain failure criteria; Strength domains; STRESS; CONJECTURE; COMPOSITE;
D O I
10.1016/j.mechmat.2012.05.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A methodology is presented for bounding the higher L-p norms, 2 <= p <= infinity of the local strain inside random media. We present optimal lower bounds that are given in terms of the applied loading and volume fractions for random two phase composites. These bounds provide a means to measure load transfer across length scales relating the excursions of the local fields to applied loads. These results deliver tight upper bounds on the macroscopic strength domains for statistically defined heterogeneous media. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:111 / 122
页数:12
相关论文
共 23 条
[11]  
Jikov V.V., 1994, Homogenization of Differential Operators and Integral Functionals, DOI 10.1007/978-3-642-84659-5
[12]  
KELLY A, 1986, MONOGRAPHS PHYS CHEM
[13]   Quasiconformal solutions to certain first order systems and the proof of a conjecture of G. W. Milton [J].
Leonetti, F ;
Nesi, V .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (02) :109-124
[14]  
Lieb E., 2001, Analysis
[15]   Optimal lower bounds on the dilatational strain inside random two-phase composites subjected to hydrostatic loading [J].
Lipton, R .
MECHANICS OF MATERIALS, 2006, 38 (8-10) :833-839
[16]   Optimal lower bounds on the hydrostatic stress amplification inside random two-phase elastic composites [J].
Lipton, R .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2005, 53 (11) :2471-2481
[17]   Optimal lower bounds on the electric-field concentration in composite media [J].
Lipton, R .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (05) :2821-2827
[18]   Optimal inequalities for gradients of solutions of elliptic equations occurring in two-phase heat conductors [J].
Lipton, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 32 (05) :1081-1093
[19]  
Milton G.W., 2004, The Theory of Composites
[20]  
Milton G.W., 1986, IMA Vol. Math. Appl., V1, P150