We deal with the numerical solution of the Navier-Stokes equations describing a motion of viscous compressible fluids. In order to obtain a sufficiently stable higher order scheme with respect to the time and space coordinates, we develop a combination of the discontinuous Galerkin finite element (DGFE) method for the space discretization and the backward difference formulae (BDF) for the time discretization. Since the resulting discrete problem leads to a system of nonlinear algebraic equations at each time step, we employ suitable linearizations of inviscid as well as viscous fluxes which give a linear algebraic problem at each time step. Finally, the resulting BDF-DGFE scheme is applied to steady as well as unsteady flows and achieved results are compared with reference data.