The n-Body Problem in Spaces of Constant Curvature. Part I: Relative Equilibria

被引:65
作者
Diacu, Florin [1 ,2 ]
Perez-Chavela, Ernesto [3 ]
Santoprete, Manuele [4 ]
机构
[1] Univ Victoria, Pacific Inst Math Sci, Victoria, BC V8W 3R4, Canada
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[3] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
[4] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
n-body problem; Spaces of constant curvature; Relative equilibria; Lagrangian and Eulerian orbits; SAARIS CONJECTURE; HYPERBOLIC PLANE; 3-BODY PROBLEM;
D O I
10.1007/s00332-011-9116-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the Newtonian n-body problem of celestial mechanics to spaces of curvature kappa = constant and provide a unified framework for studying the motion. In the 2-dimensional case, we prove the existence of several classes of relative equilibria, including the Lagrangian and Eulerian solutions for any kappa not equal 0 and the hyperbolic rotations for kappa < 0. These results lead to a new way of understanding the geometry of the physical space. In the end we prove Saari's conjecture when the bodies are on a geodesic that rotates elliptically or hyperbolically.
引用
收藏
页码:247 / 266
页数:20
相关论文
共 34 条
[1]  
[Anonymous], 1913, GEOMETRISCHE UNTERSU
[2]  
[Anonymous], BERICHTE KONIGL S MP
[3]  
[Anonymous], BERICHTE KONIGL S MP
[4]  
[Anonymous], DEMONSTRATIO MATH
[5]  
[Anonymous], REGIONAL C SERIES MA
[6]  
Baker A., 2002, Matrix Groups: An Introduction to Lie Group Theory
[7]   Central potentials on spaces of constant curvature:: The Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2 -: art. no. 052702 [J].
Cariñena, JF ;
Rañada, MF ;
Santander, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[8]   Saari's conjecture for the collinear n-body problem [J].
Diacu, F ;
Perez-Chavela, E ;
Santoprete, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (10) :4215-4223
[9]  
Diacu F, 2012, ATLANTIS MO IN PRESS
[10]  
Diacu F., 2012, J NONLINEAR IN PRESS