共 50 条
First principles study of heavy oil organonitrogen adsorption on NiMoS hydrotreating catalysts
被引:39
|作者:
Sun, MY
Nelson, AE
[1
]
Adjaye, J
机构:
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 2G6, Canada
[2] Syncrude Canada Ltd, Edmonton Res Ctr, Edmonton, AB T6N 1H4, Canada
关键词:
adsorption;
NiMoS;
hydrodenitrogenation;
quinoline;
indole;
acridine carbazole;
heavy oil;
density-functional theory;
D O I:
10.1016/j.cattod.2005.08.024
中图分类号:
O69 [应用化学];
学科分类号:
081704 ;
摘要:
The adsorption of quinoline, acridine, indole, and carbazole on the well-defined NiMoS hydrotreating catalyst edge surface has been studied by means of density-functional theory (DFT) using a periodic supercell model. Quinoline and acridine, the basic nitrogen-containing molecules present in heavy oils, are preferably adsorbed on the Ni-edge surface through the lone pair electrons of the nitrogen atom, which produces relatively high adsorption energies (-Delta E-a = 16-26 kcal mol(-1)). Indole and carbazole, the non-basic nitrogen-containing molecules, primarily interact with the NiMoS catalyst edge surface through the pi-electrons of the carbon atoms. While indole preferentially adsorbs on the NiMoS surface through the P-carbon of the pyrrolic ring (-Delta E-a = 19 kcal mol(-1)), carbazole primarily interacts with the NiMoS surface through the phenyl rings (-Delta E-a = 13 kcal mol(-1)). The relative adsorptivities and energetically preferred adsorption modes of the nitrogen-containing molecules in heavy oils can provide insights into experimental observations about hydrodenitrogenation (HDN) kinetics and reaction pathways. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 53
页数:5
相关论文