Variable selection in expectile regression

被引:22
作者
Zhao, Jun [1 ]
Zhang, Yi [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
关键词
Expectile regression; SCAD; statistical inference; variable selection; 62J99; 62F12; 62F25; QUANTILE REGRESSION; ORACLE PROPERTIES; LASSO;
D O I
10.1080/03610926.2017.1324989
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider penalized linear expectile regression using SCAD penalty function. We prove that our estimator has not only root n consistency but also oracle properties. In order to perform a better statistical inference, we make a correction of our estimator. The performance of our proposed methods are investigated through simulation studies.
引用
收藏
页码:1731 / 1746
页数:16
相关论文
共 50 条
  • [1] Expectile regression for analyzing heteroscedasticity in high dimension
    Zhao, Jun
    Chen, Yingyu
    Zhang, Yi
    STATISTICS & PROBABILITY LETTERS, 2018, 137 : 304 - 311
  • [2] VARIABLE SELECTION IN QUANTILE REGRESSION
    Wu, Yichao
    Liu, Yufeng
    STATISTICA SINICA, 2009, 19 (02) : 801 - 817
  • [3] Nonparametric Expectile Regression Meets Deep Neural Networks: A Robust Nonlinear Variable Selection method
    Yang, Rui
    Song, Yunquan
    Statistical Analysis and Data Mining, 2024, 17 (06)
  • [4] Model selection in semiparametric expectile regression
    Spiegel, Elmar
    Sobotka, Fabian
    Kneib, Thomas
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3008 - 3038
  • [5] Retire: Robust expectile regression in high dimensions
    Man, Rebeka
    Tan, Kean Ming
    Wang, Zian
    Zhou, Wen-Xin
    JOURNAL OF ECONOMETRICS, 2024, 239 (02)
  • [6] Group penalized expectile regression
    Ouhourane, Mohamed
    Oualkacha, Karim
    Yang, Archer Yi
    STATISTICAL METHODS AND APPLICATIONS, 2024, : 1251 - 1313
  • [7] Variable selection for mode regression
    Chen, Yingzhen
    Ma, Xuejun
    Zhou, Jingke
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (06) : 1077 - 1084
  • [8] Penalized expectile regression: an alternative to penalized quantile regression
    Liao, Lina
    Park, Cheolwoo
    Choi, Hosik
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2019, 71 (02) : 409 - 438
  • [9] Variable selection and debiased estimation for single-index expectile model
    Jiang, Rong
    Peng, Yexun
    Deng, Yufei
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (04) : 658 - 673
  • [10] Local polynomial expectile regression
    C. Adam
    I. Gijbels
    Annals of the Institute of Statistical Mathematics, 2022, 74 : 341 - 378