Development and implementation of an algorithm for detection of protein complexes in large interaction networks

被引:320
作者
Altaf-Ul-Amin, Md [1 ]
Shinbo, Yoko [1 ]
Mihara, Kenji [1 ]
Kurokawa, Ken [1 ]
Kanaya, Shigehiko [1 ]
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Dept Bioinformat & Genom, Ikoma, Nara 6300101, Japan
关键词
D O I
10.1186/1471-2105-7-207
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: After complete sequencing of a number of genomes the focus has now turned to proteomics. Advanced proteomics technologies such as two-hybrid assay, mass spectrometry etc. are producing huge data sets of protein-protein interactions which can be portrayed as networks, and one of the burning issues is to find protein complexes in such networks. The enormous size of protein-protein interaction (PPI) networks warrants development of efficient computational methods for extraction of significant complexes. Results: This paper presents an algorithm for detection of protein complexes in large interaction networks. In a PPI network, a node represents a protein and an edge represents an interaction. The input to the algorithm is the associated matrix of an interaction network and the outputs are protein complexes. The complexes are determined by way of finding clusters, i.e. the densely connected regions in the network. We also show and analyze some protein complexes generated by the proposed algorithm from typical PPI networks of Escherichia coli and Saccharomyces cerevisiae. A comparison between a PPI and a random network is also performed in the context of the proposed algorithm. Conclusion: The proposed algorithm makes it possible to detect clusters of proteins in PPI networks which mostly represent molecular biological functional units. Therefore, protein complexes determined solely based on interaction data can help us to predict the functions of proteins, and they are also useful to understand and explain certain biological processes.
引用
收藏
页数:13
相关论文
共 15 条
  • [1] Iterative cluster analysis of protein interaction data
    Arnau, V
    Mars, S
    Marín, I
    [J]. BIOINFORMATICS, 2005, 21 (03) : 364 - 378
  • [2] An automated method for finding molecular complexes in large protein interaction networks
    Bader, GD
    Hogue, CW
    [J]. BMC BIOINFORMATICS, 2003, 4 (1)
  • [3] GO::TermFinder - open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes
    Boyle, EI
    Weng, SA
    Gollub, J
    Jin, H
    Botstein, D
    Cherry, JM
    Sherlock, G
    [J]. BIOINFORMATICS, 2004, 20 (18) : 3710 - 3715
  • [4] Edachery J, 1999, LECT NOTES COMPUT SC, V1731, P98
  • [5] ERDOS P, 1989, PUBL MATH I HUNG, V5, P17
  • [6] Functional organization of the yeast proteome by systematic analysis of protein complexes
    Gavin, AC
    Bösche, M
    Krause, R
    Grandi, P
    Marzioch, M
    Bauer, A
    Schultz, J
    Rick, JM
    Michon, AM
    Cruciat, CM
    Remor, M
    Höfert, C
    Schelder, M
    Brajenovic, M
    Ruffner, H
    Merino, A
    Klein, K
    Hudak, M
    Dickson, D
    Rudi, T
    Gnau, V
    Bauch, A
    Bastuck, S
    Huhse, B
    Leutwein, C
    Heurtier, MA
    Copley, RR
    Edelmann, A
    Querfurth, E
    Rybin, V
    Drewes, G
    Raida, M
    Bouwmeester, T
    Bork, P
    Seraphin, B
    Kuster, B
    Neubauer, G
    Superti-Furga, G
    [J]. NATURE, 2002, 415 (6868) : 141 - 147
  • [7] Hishigaki H, 2001, YEAST, V18, P523, DOI 10.1002/yea.706.abs
  • [8] Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
    Ho, Y
    Gruhler, A
    Heilbut, A
    Bader, GD
    Moore, L
    Adams, SL
    Millar, A
    Taylor, P
    Bennett, K
    Boutilier, K
    Yang, LY
    Wolting, C
    Donaldson, I
    Schandorff, S
    Shewnarane, J
    Vo, M
    Taggart, J
    Goudreault, M
    Muskat, B
    Alfarano, C
    Dewar, D
    Lin, Z
    Michalickova, K
    Willems, AR
    Sassi, H
    Nielsen, PA
    Rasmussen, KJ
    Andersen, JR
    Johansen, LE
    Hansen, LH
    Jespersen, H
    Podtelejnikov, A
    Nielsen, E
    Crawford, J
    Poulsen, V
    Sorensen, BD
    Matthiesen, J
    Hendrickson, RC
    Gleeson, F
    Pawson, T
    Moran, MF
    Durocher, D
    Mann, M
    Hogue, CWV
    Figeys, D
    Tyers, M
    [J]. NATURE, 2002, 415 (6868) : 180 - 183
  • [9] Lethality and centrality in protein networks
    Jeong, H
    Mason, SP
    Barabási, AL
    Oltvai, ZN
    [J]. NATURE, 2001, 411 (6833) : 41 - 42
  • [10] Protein complex prediction via cost-based clustering
    King, AD
    Przulj, N
    Jurisica, I
    [J]. BIOINFORMATICS, 2004, 20 (17) : 3013 - 3020