Photocatalytic CO2 reduction over Nb2O5/basic bismuth nitrate nanocomposites

被引:23
作者
Oliveira, Jessica A. [1 ,2 ]
Torres, Juliana A. [2 ]
Goncalves, Renato, V [3 ]
Ribeiro, Caue [2 ]
Nogueira, Francisco G. E. [1 ]
Ruotolo, Luis A. M. [1 ]
机构
[1] Univ Fed Sao Carlos, Grad Program Chem Engn, Rod Washington Luiz,Km 235, BR-13565905 Sao Carlos, SP, Brazil
[2] Embrapa Instrumentat, Rua 15 Novembro 1452, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Sao Paulo, Sao Carlos Inst Phys, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Composites; Nanostructures; Semiconductors; Chemical synthesis; Catalytic properties; HYDROTHERMAL SYNTHESIS; CARBON-DIOXIDE; VISIBLE-LIGHT; RHODAMINE-B; DEGRADATION; PERFORMANCE; DRIVEN; TIO2; HETEROSTRUCTURES; BI2O2(OH)(NO3);
D O I
10.1016/j.materresbull.2020.111073
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, CO2 was photocatalytic converted to valuable chemicals using photoactive basic bismuth nitrates (Bi6O(4+x)(OH)((4-x))NO3)((6-x))center dot nH(2)O, x = 0-2, n = 0-3) and niobium pentoxide nanocomposites (BBN/Nb2O5). Milder hydrothermal synthesis (at 120 degrees C) maintained the crystal lattice of the BBN precursor (Bi6O5(-OH)(3)(NO3)(5)center dot 3H(2)O), while the synthesis carried out at 230 degrees C led to lamellar Bi2O2(OH)(NO3). Despite of the sample treated at 230 degrees C did not present the required band edge positions to reduce CO2, all the other materials were active for CO2 photoreduction. CO (similar to 2.8 mu mol g(-1) h(-1)) was identified as the main product, followed by C2H4 (similar to 0.1 mu mol g(-1) h(-1)), with the latter being favored using the nanocomposite produced at 120 degrees C. Scavenger experiments revealed that the photocatalytic mechanism is based on a Z-scheme, where molecules are oxidized in the valence band of Nb2O5 and CO2 is reduced in the conduction band of BBN.
引用
收藏
页数:11
相关论文
共 65 条
[1]   Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion [J].
Aguirre, Matias E. ;
Zhou, Ruixin ;
Eugene, Alexis J. ;
Guzman, Marcelo I. ;
Grela, Maria A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 :485-493
[2]   A stable single-crystal Bi3NbO7 nanoplates superstructure for effective visible-light-driven photocatalytic removal of nitric oxide [J].
Ai, Zhihui ;
Ho, Wingkei ;
Lee, Shuncheng .
APPLIED SURFACE SCIENCE, 2012, 263 :266-272
[3]   New Synthesis of Nanosized Niobium Oxides and Lithium Niobate Particles and Their Characterization by XPS Analysis [J].
Aufray, Maelenn ;
Menuel, Stephane ;
Fort, Yves ;
Eschbach, Julien ;
Rouxel, Didier ;
Vincent, Brice .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (08) :4780-4785
[4]   VANADIUM PEROXIDE COMPLEXES [J].
BUTLER, A ;
CLAGUE, MJ ;
MEISTER, GE .
CHEMICAL REVIEWS, 1994, 94 (03) :625-638
[5]   ZnO:ZnWO4 heterostructure with enhanced photocatalytic activity for pollutant degradation in liquid and gas phases [J].
Carvalho, Kele T. G. ;
Lopes, Osmando F. ;
Ferreira, Debora C. ;
Ribeiro, Caue .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 797 :1299-1309
[7]   ELECTRICAL AND ELECTROCHEMICAL CHARACTERIZATION OF LI2O-P2O5-NB2O5-BASED SOLID ELECTROLYTES [J].
CHOWDARI, BVR ;
RADHAKRISHNAN, K .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1989, 110 (01) :101-110
[8]   In-situ X-ray powder diffraction studies of hydrothermal and thermal decomposition reactions of basic bismuth(III) nitrates in the temperature range 20-650 °C [J].
Christensen, AN ;
Jensen, TR ;
Scarlett, NVY ;
Madsen, IC ;
Hanson, JC ;
Altomare, A .
DALTON TRANSACTIONS, 2003, (16) :3278-3282
[9]   Synthesis and characterization of basic bismuth(III) nitrates [J].
Christensen, AN ;
Chevallier, MA ;
Skibsted, J ;
Iversen, BB .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 2000, (03) :265-270
[10]   Facile one-pot preparation of Bi6O6(OH)3(NO3)3•1.5H2O-Bi2WO6 heterostructure with superior photocatalytic activity [J].
Cui, Yan ;
Yang, Li-Min ;
Zhang, Guo-Ying ;
Feng, Yan .
CATALYSIS COMMUNICATIONS, 2015, 59 :83-87