A note on h(x) - Fibonacci quaternion polynomials

被引:33
作者
Catarino, Paula [1 ]
机构
[1] Univ Tras Os Montes & Alto Douro, Dept Math, UTAD, P-5001801 Vila Real, Portugal
关键词
GENERALIZED FIBONACCI; K-FIBONACCI;
D O I
10.1016/j.chaos.2015.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce h(x) - Fibonacci quaternion polynomials that generalize the k - Fibonacci quaternion numbers, which in their turn are a generalization of the Fibonacci quaternion numbers. We also present a Binet-style formula, ordinary generating function and some basic identities for the h(x) - Fibonacci quaternion polynomial sequences. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 31 条
  • [1] Adler S. L., 1994, Quaternionic Quantum Mechanics and Quantum Fields
  • [2] Fibonacci Generalized Quaternions
    Akyigit, Mahmut
    Kosal, Hidayet Huda
    Tosun, Murat
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2014, 24 (03) : 631 - 641
  • [3] Split Fibonacci Quaternions
    Akyigit, Mahmut
    Kosal, Hidayet Huda
    Tosun, Murat
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (03) : 535 - 545
  • [4] [Anonymous], 2003, On quaternions and octonions: their geometry, arithmetic, and symmetry
  • [5] BICKNELL M, 1975, FIBONACCI QUART, V13, P345
  • [6] Bodnar Y, 1994, GOLDEN SECTION NONEU
  • [7] Bolat C., 2010, INT J CONT MATH SCI, V5, P1097
  • [8] Butusov K.P., 1978, PROBLEMY ISSLEDOVANI, V7, P475
  • [9] Catarino P, 2014, JP J ALGEBR NUMBER T, V32, P63
  • [10] Catarino P., 2014, Int. J. Contemp. Math. Sci, V9, P37, DOI [10.12988/ijcms.2014.311120, DOI 10.12988/IJCMS.2014.311120]