Nonparametric maximum margin criterion for face recognition

被引:0
作者
Qiu, XP [1 ]
Wu, LD [1 ]
机构
[1] Fudan Univ, Dept Comp Sci & Engn, Media Comp & Web Intelligence Lab, Shanghai 200433, Peoples R China
来源
2005 International Conference on Image Processing (ICIP), Vols 1-5 | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Linear discriminant analysis (LDA) is a popular feature extraction technique in statistical pattern recognition. However, it often suffers from the small sample size problem when dealing with the high dimensional image data. Moreover, while LDA is guaranteed to find the best directions when each class has a Gaussian density with a common covariance matrix, it can fail if the class densities are more general. In this paper, a new feature extraction method, nonparametric maximum margin criterion (NMMC), is proposed. NMMC finds the important discriminant directions without assuming the class densities belong to any particular parametric family, and it does not depend on the nonsingularity of the within-class scatter matrix. Our experimental results on the ATT and FERET face databases demonstrate that NMMC outperforms the existing variant LDA methods and the other state-of-art face recognition approaches.
引用
收藏
页码:1413 / 1416
页数:4
相关论文
共 14 条
[1]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[2]   A new LDA-based face recognition system which can solve the small sample size problem [J].
Chen, LF ;
Liao, HYM ;
Ko, MT ;
Lin, JC ;
Yu, GJ .
PATTERN RECOGNITION, 2000, 33 (10) :1713-1726
[3]  
Friedman J., 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5
[4]   NONPARAMETRIC DISCRIMINANT-ANALYSIS [J].
FUKUNAGA, K ;
MANTOCK, JM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1983, 5 (06) :671-678
[5]  
Fukunaga K., 1990, INTRO STAT PATTERN R
[6]  
Li H.F., 2003, P NEURAL INFORM PROC
[7]   A GENERALIZED OPTIMAL SET OF DISCRIMINANT-VECTORS [J].
LIU, K ;
CHENG, YQ ;
YANG, JY .
PATTERN RECOGNITION, 1992, 25 (07) :731-739
[8]   Bayesian face recognition [J].
Moghaddam, B ;
Jebara, T ;
Pentland, A .
PATTERN RECOGNITION, 2000, 33 (11) :1771-1782
[9]   The FERET database and evaluation procedure for face-recognition algorithms [J].
Phillips, PJ ;
Wechsler, H ;
Huang, J ;
Rauss, PJ .
IMAGE AND VISION COMPUTING, 1998, 16 (05) :295-306
[10]  
Samaria F., 1994, P 2 IEEE WORKSH APPL