Extreme Learning Machine as a Generalizable Classification Engine

被引:0
作者
Zyarah, Abdullah M. [1 ,2 ]
Kudithipudi, Dhireesha [1 ]
机构
[1] Rochester Inst Technol, NanoComp Res Lab, Rochester, NY 14623 USA
[2] Univ Baghdad, Dept Elect Engn, Baghdad 10071, Iraq
来源
2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2017年
关键词
Extreme Learning Machine; Classification; Multi-Classifier ELM (MT-ELM); IMPLEMENTATION; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Extreme learning machine is an emerging neural network architecture that offers fast learning and generalization for multiple tasks. In this work, a scalable digital architecture for multi-classifier extreme learning machine (MT-ELM) is proposed. The proposed architecture performs multiple classification tasks without reconfiguring the network. The design is validated with MNIST dataset and it is shown that the proposed model achieves an accuracy of 91.7% for classifying numbers in the MNIST dataset and an accuracy of 90.35% for categorizing number parity. The design is synthesized on a TSMC-65nm technology node and the power dissipation is 13.6 mW for MT-ELM network with 80 hidden neurons and 12 output neurons.
引用
收藏
页码:3371 / 3376
页数:6
相关论文
共 21 条
[11]   A fast and accurate online sequential learning algorithm for feedforward networks [J].
Liang, Nan-Ying ;
Huang, Guang-Bin ;
Saratchandran, P. ;
Sundararajan, N. .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (06) :1411-1423
[12]   Ensemble Based Extreme Learning Machine [J].
Liu, Nan ;
Wang, Han .
IEEE SIGNAL PROCESSING LETTERS, 2010, 17 (08) :754-757
[13]   LEARNING AND GENERALIZATION CHARACTERISTICS OF THE RANDOM VECTOR FUNCTIONAL-LINK NET [J].
PAO, YH ;
PARK, GH ;
SOBAJIC, DJ .
NEUROCOMPUTING, 1994, 6 (02) :163-180
[14]   A Highly Integrable FPGA-Based Runtime-Configurable Multilayer Perceptron [J].
Skodzik, Jan ;
Altmann, Vlado ;
Wagner, Benjamin ;
Danielis, Peter ;
Timmermann, Dirk .
2013 IEEE 27TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS (AINA), 2013, :429-436
[15]   Distinct representations of olfactory information in different cortical centres [J].
Sosulski, Dara L. ;
Bloom, Maria Lissitsyna ;
Cutforth, Tyler ;
Axel, Richard ;
Datta, Sandeep Robert .
NATURE, 2011, 472 (7342) :213-216
[16]   Multi-label classification with Bayesian network-based chain classifiers [J].
Sucar, L. Enrique ;
Bielza, Concha ;
Morales, Eduardo F. ;
Hernandez-Leal, Pablo ;
Zaragoza, Julio H. ;
Larranaga, Pedro .
PATTERN RECOGNITION LETTERS, 2014, 41 :14-22
[17]  
Tang JX, 2014, IEEE IMAGE PROC, P175, DOI 10.1109/ICIP.2014.7025034
[18]  
Tsoumakas G., 2006, INT J DATA WAREHOUS, V3
[19]   ML-KNN: A lazy learning approach to multi-label leaming [J].
Zhang, Min-Ling ;
Zhou, Zhi-Hua .
PATTERN RECOGNITION, 2007, 40 (07) :2038-2048
[20]   Harmonic balance method implementation of nonlinear dynamic characteristics for compound planetary gear sets [J].
Zhu, Weilin ;
Wu, Shijing ;
Wang, Xiaosun ;
Peng, Zeming .
NONLINEAR DYNAMICS, 2015, 81 (03) :1511-1522