Limited thermal conductance of metal-carbon interfaces

被引:34
作者
Gengler, Jamie J. [1 ,2 ]
Shenogin, Sergei V. [1 ,3 ]
Bultman, John E. [1 ,4 ]
Roy, Ajit K. [1 ]
Voevodin, Andrey A. [1 ]
Muratore, Chris [1 ]
机构
[1] USAF, Res Lab, Mat & Mfg Directorate, Nanoelect Mat Branch, Wright Patterson AFB, OH 45433 USA
[2] Spectral Energies LLC, Dayton, OH 45431 USA
[3] UES Inc, Dayton, OH 45432 USA
[4] Univ Dayton, Res Inst, Dayton, OH 45469 USA
关键词
INITIO FORCE-FIELD; NANOTUBE; GRAPHENE;
D O I
10.1063/1.4764006
中图分类号
O59 [应用物理学];
学科分类号
摘要
The thermal conductance for a series of metal-graphite interfaces has been experimentally measured with time-domain thermoreflectance (TDTR). For metals with Debye temperatures up to similar to 400K, a linear relationship exists with the thermal conductance values. For metals with Debye temperatures in excess of similar to 400 K, the measured metal-graphite thermal conductance values remain constant near 60MW m(-2) K-1. Titanium showed slightly higher conductance than aluminum, despite the closeness of atomic mass and Debye temperature for the two metals. Surface analysis was used to identify the presence of titanium carbide at the interface in contrast to the aluminum and gold-carbon interfaces (with no detectable carbide phases). It was also observed that air-cleaved graphite surfaces in contact with metals yielded slightly higher thermal conductance than graphite surfaces cleaved in vacuo. Examination of samples with scanning electron microscopy revealed that the lack of absorbed molecules on the graphite surface resulted in differences in transducer film morphology, thereby altering the interface conductance. Classical molecular dynamic simulations of metal-carbon nanotube thermal conductance values were calculated and compared to the TDTR results. The upper limit of metal-graphite thermal conductance is attributed to the decreased coupling at higher frequencies of the lighter metals studied, and to the decreased heat capacity for higher vibrational frequency modes. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4764006]
引用
收藏
页数:6
相关论文
共 30 条
[1]   Vacuum Phonon Tunneling [J].
Altfeder, Igor ;
Voevodin, Andrey A. ;
Roy, Ajit K. .
PHYSICAL REVIEW LETTERS, 2010, 105 (16)
[2]   In situ TEM investigations of dendritic growth of Au particles on HOPG [J].
Anton, R ;
Schneidereit, I .
PHYSICAL REVIEW B, 1998, 58 (20) :13874-13881
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[5]   Metallic thin film thickness determination using electron probe microanalysis [J].
Campos, CS ;
Coleoni, EA ;
Trincavelli, JC ;
Kaschny, J ;
Hubbler, R ;
Soares, MRF ;
Vasconcellos, MAZ .
X-RAY SPECTROMETRY, 2001, 30 (04) :253-259
[6]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[7]   Increased real contact in thermal interfaces: A carbon nanotube/foil material [J].
Cola, Baratunde A. ;
Xu, Xianfan ;
Fisher, Timothy S. .
APPLIED PHYSICS LETTERS, 2007, 90 (09)
[8]   A metallization and bonding approach for high performance carbon nanotube thermal interface materials [J].
Cross, Robert ;
Cola, Baratunde A. ;
Fisher, Timothy ;
Xu, Xianfan ;
Gall, Ken ;
Graham, Samuel .
NANOTECHNOLOGY, 2010, 21 (44)
[9]   Inelastic phonon interactions at solid-graphite interfaces [J].
Duda, John C. ;
Hopkins, Patrick E. ;
Beechem, Thomas E. ;
Smoyer, Justin L. ;
Norris, Pamela M. .
SUPERLATTICES AND MICROSTRUCTURES, 2010, 47 (04) :550-555
[10]   Two-color time-domain thermoreflectance of various metal transducers with an optical parametric oscillator [J].
Gengler, Jamie J. ;
Roy, Sukesh ;
Jones, John G. ;
Gord, James R. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (05)