Finite-time boundedness and finite-time l2 gain analysis of discrete-time switched linear systems with average dwell time

被引:63
作者
Lin, Xiangze [1 ,4 ]
Du, Haibo [2 ,3 ]
Li, Shihua [3 ]
Zou, Yun [4 ]
机构
[1] Nanjing Agr Univ, Coll Engn, Jiangsu Key Lab Intelligent Agr Equipment, Nanjing 210031, Jiangsu, Peoples R China
[2] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Anhui, Peoples R China
[3] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2013年 / 350卷 / 04期
基金
高等学校博士学科点专项科研基金;
关键词
STABILITY; STABILIZATION; STABILIZABILITY; SUBJECT; DESIGN;
D O I
10.1016/j.jfranklin.2013.01.018
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, finite-time boundedness and finite-time l(2) gain analysis for a class of discrete-time switched linear systems are investigated. Not only linear matrix inequality conditions for the system dynamics but also average dwell-time of switching signal is given to guarantee finite-time boundedness of discrete-time switched linear systems. Moreover, sufficient conditions which guarantee finite-time boundedness of discrete-time switched linear systems with a finite-time l(2) gain are also presented. Detail proofs are given by using multiple Lyapunov-like functions. A numerical example is employed to verify the efficiency of the proposed method. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:911 / 928
页数:18
相关论文
共 38 条
[1]   Finite-time control of discrete-time linear systems [J].
Amato, F ;
Ariola, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (05) :724-729
[2]   Robust finite-time stability of impulsive dynamical linear systems subject to norm-bounded uncertainties [J].
Amato, F. ;
Ambrosino, R. ;
Ariola, M. ;
De Tommasi, G. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2011, 21 (10) :1080-1092
[3]   Finite-time stabilization of impulsive dynamical linear systems [J].
Amato, F. ;
Ambrosino, R. ;
Cosentino, C. ;
De Tommasi, G. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2011, 5 (01) :89-101
[4]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[5]   Sufficient Conditions for Finite-Time Stability and Stabilization of Nonlinear Quadratic Systems [J].
Amato, Francesco ;
Cosentino, Carlo ;
Merola, Alessio .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (02) :430-434
[6]   Finite-time stability of linear time-varying systems with jumps [J].
Amato, Francesco ;
Ambrosino, Roberto ;
Ariola, Marco ;
Cosentino, Carlo .
AUTOMATICA, 2009, 45 (05) :1354-1358
[7]   Sufficient Conditions for Finite-Time Stability of Impulsive Dynamical Systems [J].
Ambrosino, Roberto ;
Calabrese, Francesco ;
Cosentino, Carlo ;
De Tommasi, Gianmaria .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (04) :861-865
[8]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[9]   Geometric homogeneity with applications to finite-time stability [J].
Bhat, SP ;
Bernstein, DS .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (02) :101-127
[10]  
Buisson J, 2005, LECT NOTES COMPUT SC, V3414, P184