Ordering properties of convolutions of exponential random variables

被引:78
作者
Bon, JL
Paltanea, E
机构
[1] Univ Paris Sud, F-91405 Orsay, France
[2] Univ Transilvania Brasov, RO-2200 Brasov, Romania
关键词
convolution; mean order; stochastic order; hazard rate order; likelihood ratio order; majorization;
D O I
10.1023/A:1009605613222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Convolutions of independent random variables are usually compared. In this paper, after a synthetic comparison with respect to hazard rate ordering between sums of independent exponential random variables, we focus on the special case where one sum is identically distributed. So, for a given sum of n independent exponential random variables, we deduce the "best" Erlang-n bounds, with respect to each of the usual orderings: mean ordering, stochastic ordering, hazard rate ordering and likelihood ratio ordering.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 9 条
[1]   TABLES OF BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE [J].
BARLOW, RE ;
MARSHALL, AW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1965, 60 (311) :872-890
[2]  
Barlow RE, 1975, STAT THEORY RELIABIL
[3]   SCHUR PROPERTIES OF CONVOLUTIONS OF EXPONENTIAL AND GEOMETRIC RANDOM-VARIABLES [J].
BOLAND, PJ ;
ELNEWEIHI, E ;
PROSCHAN, F .
JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 48 (01) :157-167
[4]  
Gnedenko B. V., 1969, Mathematical Methods of Reliability Theory
[5]  
Marshall Albert W., 1979, INEQUALITIES THEORY, V143
[6]  
Ross S. M., 1983, STOCHASTIC PROCESSES
[7]  
SHAKED M., 1994, Stochastic Orders and Their Applications
[8]   BIVARIATE CHARACTERIZATION OF SOME STOCHASTIC ORDER RELATIONS [J].
SHANTHIKUMAR, JG ;
YAO, DD .
ADVANCES IN APPLIED PROBABILITY, 1991, 23 (03) :642-659
[9]  
Szekli R., 1995, Stochastic Ordering and Dependence in Applied Probability