Kloosterman sheaves for reductive groups

被引:40
作者
Heinloth, Jochen [1 ]
Ngo, Bao-Chau [2 ]
Yun, Zhiwei [3 ]
机构
[1] Univ Duisburg Essen, Essen, Germany
[2] Univ Chicago, Chicago, IL 60637 USA
[3] MIT, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
LOOP-GROUPS; AFFINE; REPRESENTATIONS; ELEMENTS;
D O I
10.4007/annals.2013.177.1.5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Deligne constructed a remarkable local system on P-1 - {0, infinity} attached to a family of Kloosterman sums. Katz calculated its monodromy and asked whether there are Kloosterman sheaves for general reductive groups and which automorphic forms should be attached to these local systems under the Langlands correspondence. Motivated by work of Gross and Frenkel-Gross we find an explicit family of such automorphic forms and even a simple family of automorphic sheaves in the framework of the geometric Langlands program. We use these automorphic sheaves to construct l-adic Kloosterman sheaves for any reductive group in a uniform way, and describe the local and global monodromy of these Kloosterman sheaves. In particular, they give motivic Galois representations with exceptional monodromy groups G(2), F-4, E-7 and E-8. This also gives an example of the geometric Langlands correspondence with wild ramifications for any reductive group.
引用
收藏
页码:241 / 310
页数:70
相关论文
共 38 条
[1]  
[Anonymous], 1962, LECT NOTES MATH
[2]  
[Anonymous], 2008, COMMUNICATION
[3]   Perverse sheaves on affine flags and langlands dual group [J].
Arkhipov, Sergey ;
Bezrukavnikov, Roman .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 170 (01) :135-183
[4]  
Beilinson A., 1993, Advances in Soviet Mathematics, V16, P1
[5]  
BEILINSON AA, 1982, ASTERISQUE, P7
[6]   Some results about geometric Whittaker model [J].
Bezrukavnikov, R ;
Braverman, A ;
Mirkovic, I .
ADVANCES IN MATHEMATICS, 2004, 186 (01) :143-152
[7]  
Bezrukavnikov R., 2004, Adv. Stud. Pure Math., V40, P69, DOI [10.2969/aspm/04010069, DOI 10.2969/ASPM/04010069]
[8]  
Bourbaki N., 1968, ACTUALITES SCI IND
[9]  
Bruhat F., 1984, Inst. Hautes tudes Sci. Publ. Math, V60, P197
[10]  
Carter R., 1985, FINITE GROUPS LIE TY