Establishment of generalized synchronization in a network of logistic maps

被引:0
作者
Koronovskii, A. A. [1 ,2 ]
Moskalenko, O. I. [1 ,2 ]
Pivovarov, A. A. [1 ]
Hramov, A. E. [1 ,2 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Saratov 410012, Russia
[2] Yury Gagarin State Tech Univ Saratov, Saratov 410054, Russia
基金
俄罗斯科学基金会;
关键词
CHAOS;
D O I
10.1134/S1063785015080246
中图分类号
O59 [应用物理学];
学科分类号
摘要
We have studied the process of generalized chaotic synchronization establishment in a network of mutually coupled logistic maps and analyzed the character of interaction between elements of the network on the passage from asynchronous to synchronous dynamics related to increase in the coupling parameter. Peculiarities of the interaction between elements of the network and the onset of generalized synchronization have been elucidated using the method of phase tubes.
引用
收藏
页码:765 / 767
页数:3
相关论文
共 14 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]  
Ditto W, 2002, NATURE, V415, P736, DOI 10.1038/415736b
[3]   First Experimental Observation of Generalized Synchronization Phenomena in Microwave Oscillators [J].
Dmitriev, Boris S. ;
Hramov, Alexander E. ;
Koronovskii, Alexey A. ;
Starodubov, Andrey V. ;
Trubetskov, Dmitriy I. ;
Zharkov, Yurii D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (07)
[4]   Chaotic synchronization in coupled spatially extended beam-plasma systems [J].
Filatov, Roman A. ;
Hramov, Alexander E. ;
Koronovskii, Alexey A. .
PHYSICS LETTERS A, 2006, 358 (04) :301-308
[5]   Generalized synchronization in coupled Ginzburg-Landau equations and mechanisms of its arising [J].
Hramov, AE ;
Koronovskii, AA ;
Popov, PV .
PHYSICAL REVIEW E, 2005, 72 (03)
[6]   Generalized chaotic synchronization in coupled Ginzburg-Landau equations [J].
Koronovskii, A. A. ;
Popov, P. V. ;
Hramov, A. E. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2006, 103 (04) :654-665
[7]   Generalized synchronization in discrete maps. New point of view on weak and strong synchronization [J].
Koronovskii, Alexey A. ;
Moskalenko, Olga I. ;
Shurygina, Svetlana A. ;
Hramov, Alexander E. .
CHAOS SOLITONS & FRACTALS, 2013, 46 :12-18
[8]   Nearest neighbors, phase tubes, and generalized synchronization [J].
Koronovskii, Alexey A. ;
Moskalenko, Olga I. ;
Hramov, Alexander E. .
PHYSICAL REVIEW E, 2011, 84 (03)
[9]  
Kuznetsov S P., 2001, Dynamical Chaos
[10]   Effect of noise on generalized synchronization of chaos: theory and experiment [J].
Moskalenko, O. I. ;
Hramov, A. E. ;
Koronovskii, A. A. ;
Ovchinnikov, A. A. .
EUROPEAN PHYSICAL JOURNAL B, 2011, 82 (01) :69-82