Harnack's inequality for p(.)-harmonic functions with unbounded exponent p

被引:30
作者
Harjulehto, Petteri [2 ]
Hasto, Peter [1 ]
Latvala, Visa [3 ]
机构
[1] Univ Oulu, Dept Math Sci, FI-90014 Oulu, Finland
[2] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[3] Univ Joensuu, Dept Phys & Math, FI-80101 Joensuu, Finland
关键词
Non-standard growth; Variable exponent; Laplace equation; Dirichlet energy; Solution; Caccioppoli estimate; VARIABLE EXPONENT; ELLIPTIC-EQUATIONS; LEBESGUE SPACES; SOBOLEV SPACES; REGULARITY; CONTINUITY; MINIMIZERS;
D O I
10.1016/j.jmaa.2008.05.090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of the function u = lim(lambda ->infinity)u(lambda), where u(lambda) is the solution of the min{p(.), lambda}-Laplacian Dirichlet problem with bounded Sobolev boundary function. Here p:Omega -> (n, infinity] is a variable exponent such that 1/p is Lipschitz continuous. We derive Bloch-type estimates and using them we prove Harnack's inequality in cases of unbounded but finite exponent. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 359
页数:15
相关论文
共 50 条
  • [41] On the Lipschitz character of orthotropic p-harmonic functions
    Bousquet, P.
    Brasco, L.
    Leone, C.
    Verde, A.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (03)
  • [42] Estimates of p-harmonic functions in planar sectors
    Lundstrom, Niklas L. P.
    Singh, Jesper
    [J]. ARKIV FOR MATEMATIK, 2023, 61 (01): : 141 - 175
  • [43] HOLDER CONTINUITY OF DEGENERATE p-HARMONIC FUNCTIONS
    Giannetti, Flavia
    di Napoli, Antonia Passarelli
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (02) : 567 - 577
  • [44] Structural stability for variable exponent elliptic problems, I: The p(x)-Laplacian kind problems
    Andreianov, B.
    Bendahmane, M.
    Ouaro, S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) : 2 - 24
  • [45] Partial Differential Equations. - Higher regularity theory for (s, p/-harmonic functions
    Boegelein, Verena
    Duzaar, Frank
    Liao, Naian
    Bisci, Giovanni molica
    Servadei, Raffaella
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2024, 35 (02) : 311 - 321
  • [46] Harnack's inequality and Holder older continuity for weak solutions of degenerate quasilinear equations with rough coefficients
    Monticelli, D. D.
    Rodney, S.
    Wheeden, R. L.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 126 : 69 - 114
  • [47] A Harnack's inequality for mixed type evolution equations
    Paronetto, Fabio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (06) : 5259 - 5355
  • [49] Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions
    Bjorn, Anders
    Bjorn, Jana
    Lehrback, Juha
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2023, 150 (01): : 159 - 214
  • [50] Local Continuity and Harnack's Inequality for Double-Phase Parabolic Equations
    Buryachenko, Kateryna O.
    Skrypnik, Igor I.
    [J]. POTENTIAL ANALYSIS, 2022, 56 (01) : 137 - 164