Harnack's inequality for p(.)-harmonic functions with unbounded exponent p

被引:30
作者
Harjulehto, Petteri [2 ]
Hasto, Peter [1 ]
Latvala, Visa [3 ]
机构
[1] Univ Oulu, Dept Math Sci, FI-90014 Oulu, Finland
[2] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[3] Univ Joensuu, Dept Phys & Math, FI-80101 Joensuu, Finland
关键词
Non-standard growth; Variable exponent; Laplace equation; Dirichlet energy; Solution; Caccioppoli estimate; VARIABLE EXPONENT; ELLIPTIC-EQUATIONS; LEBESGUE SPACES; SOBOLEV SPACES; REGULARITY; CONTINUITY; MINIMIZERS;
D O I
10.1016/j.jmaa.2008.05.090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of the function u = lim(lambda ->infinity)u(lambda), where u(lambda) is the solution of the min{p(.), lambda}-Laplacian Dirichlet problem with bounded Sobolev boundary function. Here p:Omega -> (n, infinity] is a variable exponent such that 1/p is Lipschitz continuous. We derive Bloch-type estimates and using them we prove Harnack's inequality in cases of unbounded but finite exponent. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 359
页数:15
相关论文
共 50 条
  • [31] Differentiability of p-Harmonic Functions on Metric Measure Spaces
    Gong, Jasun
    Hajlasz, Piotr
    POTENTIAL ANALYSIS, 2013, 38 (01) : 79 - 93
  • [32] Harnack inequality for degenerate and singular operators of p-Laplacian type on Riemannian manifolds
    Kim, Soojung
    MATHEMATISCHE ANNALEN, 2016, 366 (3-4) : 1721 - 1785
  • [33] p(x)-biharmonic operator involving the p(x)-Hardy inequality
    El Khalil, Abdelouahed
    El Moumni, Mostafa
    Alaoui, Moulay Driss Morchid
    Touzani, Abdelfattah
    GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (02) : 233 - 247
  • [34] Harnack's inequality for parabolic nonlocal equations
    Stromqvist, Martin
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (06): : 1709 - 1745
  • [35] HARNACK'S INEQUALITY FOR FRACTIONAL NONLOCAL EQUATIONS
    Stinga, Pablo Raul
    Zhang, Chao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (07) : 3153 - 3170
  • [36] Local Behavior of p-harmonic Green's Functions in Metric Spaces
    Danielli, Donatella
    Garofalo, Nicola
    Marola, Niko
    POTENTIAL ANALYSIS, 2010, 32 (04) : 343 - 362
  • [37] (s, p)-Harmonic Approximation of Functions of Least Ws,1-Seminorm
    Bucur, Claudia
    Dipierro, Serena
    Lombardini, Luca
    Mazon, Jose M.
    Valdinoci, Enrico
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (02) : 1173 - 1235
  • [38] Kato's inequality for the strong p(middot)-Laplacian
    Do, Tan Duc
    Truong, Le Xuan
    STUDIA MATHEMATICA, 2023, 270 (03) : 241 - 261
  • [39] VANISHING p-CAPACITY OF SINGULAR SETS FOR p-HARMONIC FUNCTIONS
    Sato, Tomohiko
    Suzuki, Takashi
    Takahashi, Futoshi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [40] Harnack's inequality for doubly nonlinear equations of slow diffusion type
    Boegelein, Verena
    Heran, Andreas
    Schaetzler, Leah
    Singer, Thomas
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (06)