We study properties of the function u = lim(lambda ->infinity)u(lambda), where u(lambda) is the solution of the min{p(.), lambda}-Laplacian Dirichlet problem with bounded Sobolev boundary function. Here p:Omega -> (n, infinity] is a variable exponent such that 1/p is Lipschitz continuous. We derive Bloch-type estimates and using them we prove Harnack's inequality in cases of unbounded but finite exponent. (C) 2008 Elsevier Inc. All rights reserved.
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, Australia
Dipierro, Serena
Thompson, Jack
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, Australia
Thompson, Jack
Valdinoci, Enrico
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, AustraliaUniv Western Australia, Dept Math & Stat, 35 Stirling Highway, Perth, WA 6009, Australia