Harnack's inequality for p(.)-harmonic functions with unbounded exponent p

被引:30
作者
Harjulehto, Petteri [2 ]
Hasto, Peter [1 ]
Latvala, Visa [3 ]
机构
[1] Univ Oulu, Dept Math Sci, FI-90014 Oulu, Finland
[2] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[3] Univ Joensuu, Dept Phys & Math, FI-80101 Joensuu, Finland
关键词
Non-standard growth; Variable exponent; Laplace equation; Dirichlet energy; Solution; Caccioppoli estimate; VARIABLE EXPONENT; ELLIPTIC-EQUATIONS; LEBESGUE SPACES; SOBOLEV SPACES; REGULARITY; CONTINUITY; MINIMIZERS;
D O I
10.1016/j.jmaa.2008.05.090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of the function u = lim(lambda ->infinity)u(lambda), where u(lambda) is the solution of the min{p(.), lambda}-Laplacian Dirichlet problem with bounded Sobolev boundary function. Here p:Omega -> (n, infinity] is a variable exponent such that 1/p is Lipschitz continuous. We derive Bloch-type estimates and using them we prove Harnack's inequality in cases of unbounded but finite exponent. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:345 / 359
页数:15
相关论文
共 33 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[3]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[4]   Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition [J].
Alkhutov, YA ;
Krasheninnikova, OV .
IZVESTIYA MATHEMATICS, 2004, 68 (06) :1063-1117
[5]  
Alkhutov YA, 1997, DIFF EQUAT+, V33, P1653
[6]  
[Anonymous], 2006, J. Math. Sci, DOI [10.1007/s10958-005-0497-0, DOI 10.1007/S10958-005-0497-0]
[7]  
[Anonymous], 2006, Hiroshima Math. J.
[8]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[9]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[10]  
Diening L., 2004, FSDONA04 Proc, V66, P38