OPTIMALITY CONDITIONS AND A SMOOTHING TRUST REGION NEWTON METHOD FOR NONLIPSCHITZ OPTIMIZATION

被引:70
作者
Chen, Xiaojun [1 ]
Niu, Lingfeng [2 ]
Yuan, Yaxiang [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[2] Univ Chinese Acad Sci, Res Ctr Fictitious Econ & Data Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, AMSS, LSEC, Beijing 100190, Peoples R China
关键词
nonsmooth nonconvex optimization; smoothing methods; convergence; regularized optimization; penalty function; non-Lipschitz; trust region Newton method; NONSMOOTH; MINIMIZATION; CONVERGENCE; ALGORITHM; SELECTION;
D O I
10.1137/120871390
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Regularized minimization problems with nonconvex, nonsmooth, perhaps non-Lipschitz penalty functions have attracted considerable attention in recent years, owing to their wide applications in image restoration, signal reconstruction, and variable selection. In this paper, we derive affine-scaled second order necessary and sufficient conditions for local minimizers of such minimization problems. Moreover, we propose a global convergent smoothing trust region Newton method which can find a point satisfying the affine-scaled second order necessary optimality condition from any starting point. Numerical examples are given to demonstrate the effectiveness of the smoothing trust region Newton method.
引用
收藏
页码:1528 / 1552
页数:25
相关论文
共 47 条
[11]   Restricted isometry properties and nonconvex compressive sensing [J].
Chartrand, Rick ;
Staneva, Valentina .
INVERSE PROBLEMS, 2008, 24 (03)
[12]  
CHEN X., MATH PROGRA IN PRESS
[13]   Smoothing methods for nonsmooth, nonconvex minimization [J].
Chen, Xiaojun .
MATHEMATICAL PROGRAMMING, 2012, 134 (01) :71-99
[14]   LOWER BOUND THEORY OF NONZERO ENTRIES IN SOLUTIONS OF l2-lp MINIMIZATION [J].
Chen, Xiaojun ;
Xu, Fengmin ;
Ye, Yinyu .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05) :2832-2852
[15]   Smoothing Nonlinear Conjugate Gradient Method for Image Restoration Using Nonsmooth Nonconvex Minimization [J].
Chen, Xiaojun ;
Zhou, Weijun .
SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (04) :765-790
[16]  
Clarke F.H, 1983, OPTIMIZATION NONSMOO
[17]   A UNIFIED APPROACH TO GLOBAL CONVERGENCE OF TRUST REGION METHODS FOR NONSMOOTH OPTIMIZATION [J].
DENNIS, JE ;
LI, SBB ;
TAPIA, RA .
MATHEMATICAL PROGRAMMING, 1995, 68 (03) :319-346
[18]  
El Hallabi M., 1993, THESIS RICE U HOUSTO, P93
[19]   A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems [J].
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1997, 76 (03) :493-512
[20]  
FLETCHER R, 1982, MATH PROGRAM STUD, V17, P67