Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas

被引:33
作者
Park, Yae Won [1 ,2 ,3 ,4 ]
Kang, Yunjun [5 ]
Ahn, Sung Soo [1 ,2 ,3 ,4 ]
Ku, Cheol Ryong [4 ,6 ]
Kim, Eui Hyun [4 ,7 ]
Kim, Se Hoon [8 ]
Lee, Eun Jig [4 ,6 ]
Kim, Sun Ho [9 ]
Lee, Seung-Koo [1 ,2 ,3 ,4 ]
机构
[1] Yonsei Univ, Dept Radiol, Coll Med, Seoul, South Korea
[2] Yonsei Univ, Res Inst Radiol Sci, Coll Med, Seoul, South Korea
[3] Yonsei Univ, Ctr Clin Imaging Data Sci, Coll Med, Seoul, South Korea
[4] Severance Hosp, Pituitary Tumor Ctr, Seoul, South Korea
[5] Yonsei Univ, Underwood Int Coll, Integrated Sci & Engn Div, Korea, Seoul, South Korea
[6] Yonsei Univ, Dept Endocrinol, Coll Med, Seoul, South Korea
[7] Yonsei Univ, Dept Neurosurg, Coll Med, 50-1 Yonsei Ro, Seoul 03722, South Korea
[8] Yonsei Univ, Dept Pathol, Coll Med, Seoul, South Korea
[9] Ewha Womans Univ, Dept Neurosurg, Coll Med, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Acromegaly; Granulation pattern; Growth hormone-secreting pituitary adenoma; Magnetic resonance imaging; Pituitary neoplasms; Radiomics; SOMATOSTATIN ANALOGS; ACROMEGALIC PATIENTS; THERAPY; MRI; MULTICENTER; OCTREOTIDE; FEATURES; GRADE; RATES;
D O I
10.1007/s11102-020-01077-5
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose To investigate whether radiomic features from magnetic resonance image (MRI) can predict the granulation pattern of growth hormone (GH)-secreting pituitary adenoma patients. Methods Sixty-nine pathologically proven acromegaly patients (densely granulated [DG] = 50, sparsely granulated [SG] = 19) were included. Radiomic features (n = 214) were extracted from contrast-enhancing and total tumor portions from T2-weighted (T2) MRIs. Imaging features were selected using a least absolute shrinkage and selection operator (LASSO) logistic regression model with fivefold cross-validation. Diagnostic performance for predicting granulation pattern was compared with that for qualitative T2 signal intensity assessment and T2 relative signal intensity (rSI) using the area under the receiver operating characteristics curve (AUC). Results Four significant radiomic features from the contrast-enhancing tumor (1 from shape, 1 from first order feature, and 2 from second order features) were selected by LASSO for model construction. The radiomics model showed an AUC, accuracy, sensitivity, and specificity of 0.834 (95% confidence interval [CI] 0.738-0.930), 73.7%, 74.0%, and 73.9%, respectively. The radiomics model showed significantly better performance than the model using qualitative T2 signal intensity assessment (AUC 0.597 [95% CI 0.447-0.747], P = 0.009) and T2 rSI (AUC 0.647 [95% CI 0.523-0.759], P = 0.037). Conclusion Radiomic features may be useful biomarkers to differentiate granulation pattern of GH-secreting pituitary adenoma patients, and showed better performance than qualitative assessment or rSI evaluation.
引用
收藏
页码:691 / 700
页数:10
相关论文
共 47 条
[1]   Association between radiological parameters and clinical and molecular characteristics in human somatotropinomas [J].
Alhambra-Exposito, Maria R. ;
Ibanez-Costa, Alejandro ;
Moreno-Moreno, Paloma ;
Rivero-Cortes, Esther ;
Vazquez-Borrego, Mari C. ;
Blanco-Acevedo, Cristobal ;
Toledano-Delgado, Alvaro ;
Lombardo-Galera, Maria S. ;
Vallejo-Casas, Juan A. ;
Gahete, Manuel D. ;
Castano, Justo P. ;
Galvez, Maria A. ;
Luque, Raul M. .
SCIENTIFIC REPORTS, 2018, 8
[2]  
Avants BB, 2009, INSIGHT J, V2
[3]   The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly [J].
Bhayana, S ;
Booth, GL ;
Asa, SL ;
Kovacs, K ;
Ezzat, S .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2005, 90 (11) :6290-6295
[4]   Growth hormone granulation pattern and somatostatin receptor subtype 2A correlate with postoperative somatostatin receptor ligand response in acromegaly: a large single center experience [J].
Brzana, Jessica ;
Yedinak, Chris G. ;
Gultekin, Sakir H. ;
Delashaw, Johnny B. ;
Fleseriu, Maria .
PITUITARY, 2013, 16 (04) :490-498
[5]  
Cancer IAfRo, 2017, WHO CLASSIFICATION T
[6]   Preoperative octreotide treatment in newly diagnosed acromegalic patients with macroadenomas increases cure short-term postoperative rates: A prospective, randomized trial [J].
Carlsen, Sven M. ;
Lund-Johansen, Morten ;
Schreiner, Thomas ;
Aanderud, Sylvi ;
Johannesen, Oivind ;
Svartberg, Johan ;
Cooper, John G. ;
Hald, John K. ;
Fougner, Stine L. ;
Bollerslev, Jens .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2008, 93 (08) :2984-2990
[7]   Acromegaly [J].
Colao, Annamaria ;
Grasso, Ludovica F. S. ;
Giustina, Andrea ;
Melmed, Shlomo ;
Chanson, Philippe ;
Pereira, Alberto M. ;
Pivonello, Rosario .
NATURE REVIEWS DISEASE PRIMERS, 2019, 5 (1)
[8]   Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI [J].
Cuocolo, Renato ;
Ugga, Lorenzo ;
Solari, Domenico ;
Corvino, Sergio ;
D'Amico, Alessandra ;
Russo, Daniela ;
Cappabianca, Paolo ;
Cavallo, Luigi Maria ;
Elefante, Andrea .
NEURORADIOLOGY, 2020, 62 (12) :1649-1656
[9]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[10]   Radiomic analysis of imaging heterogeneity in tumours and the surrounding parenchyma based on unsupervised decomposition of DCE-MRI for predicting molecular subtypes of breast cancer [J].
Fan, Ming ;
Zhang, Peng ;
Wang, Yue ;
Peng, Weijun ;
Wang, Shiwei ;
Gao, Xin ;
Xu, Maosheng ;
Li, Lihua .
EUROPEAN RADIOLOGY, 2019, 29 (08) :4456-4467