On the Nanoengineering of Superhydrophobic and Impalement Resistant Surface Textures below the Freezing Temperature

被引:273
作者
Maitra, Tanmoy [1 ]
Tiwari, Manish K. [1 ]
Antonini, Carlo [1 ]
Schoch, Philippe [1 ]
Jung, Stefan [1 ]
Eberle, Patric [1 ]
Poulikakos, Dimos [1 ]
机构
[1] ETH, Dept Mech & Proc Engn, Lab Thermodynam Emerging Technol, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Hierarchical surface morphology; superhydrophobicity; supercooling; anti-icing; drop impact; IMPACT; TRANSITIONS; REPELLENT; DROPLETS;
D O I
10.1021/nl4037092
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The superhydrophobic behavior of nano- and microtextured surfaces leading to rebound of impacting droplets is of great relevance to nature and technology. It is not clear however, if and under what conditions this behavior is maintained when such surfaces are severely undercooled possibly leading to the formation of frost and icing. Here we elucidate key aspects of this phenomenon and show that the outcome of rebound or impalement on a textured surface is affected by air compression underneath the impacting drop and the time scale allowing this air to escape. Remarkably, drop impalement occurred at identical impact velocities, both at room and at very low temperatures (-30 degrees C) and featured a ringlike liquid meniscus penetration into the surface texture with an entrapped air bubble in the middle. At low temperatures, the drop contact time and receding dynamics of hierarchical surfaces were profoundly influenced by both an increase in the liquid viscosity due to cooling and a partial meniscus penetration into the texture. For hierarchical surfaces with the same solid fraction in their roughness, minimizing the gap between the asperities (both at micro- and nanoscales) yielded the largest resistance to millimetric drop impalement. The best performing surface impressively showed rebound at -30 degrees C for drop impact velocity of 2.6 m/s.
引用
收藏
页码:172 / 182
页数:11
相关论文
共 48 条
  • [1] A-zisik M.N., 1993, Heat conduction
  • [2] Temperature dependent droplet impact dynamics on flat and textured surfaces
    Alizadeh, Azar
    Bahadur, Vaibhav
    Zhong, Sheng
    Shang, Wen
    Li, Ri
    Ruud, James
    Yamada, Masako
    Ge, Liehui
    Dhinojwala, Ali
    Sohal, Manohar
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (11)
  • [3] Dynamics of Ice Nucleation on Water Repellent Surfaces
    Alizadeh, Azar
    Yamada, Masako
    Li, Ri
    Shang, Wen
    Otta, Shourya
    Zhong, Sheng
    Ge, Liehui
    Dhinojwala, Ali
    Conway, Ken R.
    Bahadur, Vaibhav
    Vinciquerra, A. Joseph
    Stephens, Brian
    Blohm, Margaret L.
    [J]. LANGMUIR, 2012, 28 (06) : 3180 - 3186
  • [4] Allen D, 2006, IEEE SPECTRUM, V43, P55
  • [5] Authority C. A., 2000, AIRCRAFT ICING HDB, P2
  • [6] Bouncing or sticky droplets:: Impalement transitions on superhydrophobic micropatterned surfaces
    Bartolo, D
    Bouamrirene, F
    Verneuil, É
    Buguin, A
    Silberzan, P
    Moulinet, S
    [J]. EUROPHYSICS LETTERS, 2006, 74 (02): : 299 - 305
  • [7] Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces
    Boreyko, Jonathan B.
    Chen, Chuan-Hua
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (18)
  • [8] Anti-Icing Superhydrophobic Coatings
    Cao, Liangliang
    Jones, Andrew K.
    Sikka, Vinod K.
    Wu, Jianzhong
    Gao, Di
    [J]. LANGMUIR, 2009, 25 (21) : 12444 - 12448
  • [9] Hybrid Surface Design for Robust Superhydrophobicity
    Dash, Susmita
    Alt, Marie T.
    Garimella, Suresh V.
    [J]. LANGMUIR, 2012, 28 (25) : 9606 - 9615
  • [10] Nonwetting of impinging droplets on textured surfaces
    Deng, Tao
    Varanasi, Kripa K.
    Hsu, Ming
    Bhate, Nitin
    Keimel, Chris
    Stein, Judith
    Blohm, Margaret
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (13)