On the Nanoengineering of Superhydrophobic and Impalement Resistant Surface Textures below the Freezing Temperature

被引:279
作者
Maitra, Tanmoy [1 ]
Tiwari, Manish K. [1 ]
Antonini, Carlo [1 ]
Schoch, Philippe [1 ]
Jung, Stefan [1 ]
Eberle, Patric [1 ]
Poulikakos, Dimos [1 ]
机构
[1] ETH, Dept Mech & Proc Engn, Lab Thermodynam Emerging Technol, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Hierarchical surface morphology; superhydrophobicity; supercooling; anti-icing; drop impact; IMPACT; TRANSITIONS; REPELLENT; DROPLETS;
D O I
10.1021/nl4037092
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The superhydrophobic behavior of nano- and microtextured surfaces leading to rebound of impacting droplets is of great relevance to nature and technology. It is not clear however, if and under what conditions this behavior is maintained when such surfaces are severely undercooled possibly leading to the formation of frost and icing. Here we elucidate key aspects of this phenomenon and show that the outcome of rebound or impalement on a textured surface is affected by air compression underneath the impacting drop and the time scale allowing this air to escape. Remarkably, drop impalement occurred at identical impact velocities, both at room and at very low temperatures (-30 degrees C) and featured a ringlike liquid meniscus penetration into the surface texture with an entrapped air bubble in the middle. At low temperatures, the drop contact time and receding dynamics of hierarchical surfaces were profoundly influenced by both an increase in the liquid viscosity due to cooling and a partial meniscus penetration into the texture. For hierarchical surfaces with the same solid fraction in their roughness, minimizing the gap between the asperities (both at micro- and nanoscales) yielded the largest resistance to millimetric drop impalement. The best performing surface impressively showed rebound at -30 degrees C for drop impact velocity of 2.6 m/s.
引用
收藏
页码:172 / 182
页数:11
相关论文
共 48 条
[1]  
A-zisik M.N., 1993, Heat conduction
[2]   Temperature dependent droplet impact dynamics on flat and textured surfaces [J].
Alizadeh, Azar ;
Bahadur, Vaibhav ;
Zhong, Sheng ;
Shang, Wen ;
Li, Ri ;
Ruud, James ;
Yamada, Masako ;
Ge, Liehui ;
Dhinojwala, Ali ;
Sohal, Manohar .
APPLIED PHYSICS LETTERS, 2012, 100 (11)
[3]   Dynamics of Ice Nucleation on Water Repellent Surfaces [J].
Alizadeh, Azar ;
Yamada, Masako ;
Li, Ri ;
Shang, Wen ;
Otta, Shourya ;
Zhong, Sheng ;
Ge, Liehui ;
Dhinojwala, Ali ;
Conway, Ken R. ;
Bahadur, Vaibhav ;
Vinciquerra, A. Joseph ;
Stephens, Brian ;
Blohm, Margaret L. .
LANGMUIR, 2012, 28 (06) :3180-3186
[4]  
Allen D, 2006, IEEE SPECTRUM, V43, P55
[5]  
Authority C. A., 2000, AIRCRAFT ICING HDB, P2
[6]   Bouncing or sticky droplets:: Impalement transitions on superhydrophobic micropatterned surfaces [J].
Bartolo, D ;
Bouamrirene, F ;
Verneuil, É ;
Buguin, A ;
Silberzan, P ;
Moulinet, S .
EUROPHYSICS LETTERS, 2006, 74 (02) :299-305
[7]   Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces [J].
Boreyko, Jonathan B. ;
Chen, Chuan-Hua .
PHYSICAL REVIEW LETTERS, 2009, 103 (18)
[8]   Anti-Icing Superhydrophobic Coatings [J].
Cao, Liangliang ;
Jones, Andrew K. ;
Sikka, Vinod K. ;
Wu, Jianzhong ;
Gao, Di .
LANGMUIR, 2009, 25 (21) :12444-12448
[9]   Hybrid Surface Design for Robust Superhydrophobicity [J].
Dash, Susmita ;
Alt, Marie T. ;
Garimella, Suresh V. .
LANGMUIR, 2012, 28 (25) :9606-9615
[10]   Nonwetting of impinging droplets on textured surfaces [J].
Deng, Tao ;
Varanasi, Kripa K. ;
Hsu, Ming ;
Bhate, Nitin ;
Keimel, Chris ;
Stein, Judith ;
Blohm, Margaret .
APPLIED PHYSICS LETTERS, 2009, 94 (13)