Comparative study of the implementation of tin and titanium oxide nanoparticles as electrodes materials in Li-ion batteries

被引:16
作者
del Prado, Felix [1 ]
Andersen, Hanne Flaten [2 ]
Taeno, Maria [1 ]
Mhlen, Jan Petter [2 ]
Ramirez-Castellanos, Julio [3 ]
Maestre, David [1 ]
Karazhanov, Smagul [2 ]
Cremades, Ana [1 ]
机构
[1] Univ Complutense Madrid, Fac CC Fis, Dept Fis Mat, Madrid 28040, Spain
[2] Inst Energiteknikk, NO-2027 Kjeller, Norway
[3] Univ Complutense Madrid, Fac CC Quim, Dept Quim Inorgan 1, Madrid 28040, Spain
关键词
ULTRAFINE SNO2 NANOPARTICLES; LITHIUM INTERCALATION; AMORPHOUS TIO2; ANODE MATERIAL; CAPACITY; GRAPHENE; NANOSTRUCTURES; COMPOSITE; DIFFUSION; PROMISE;
D O I
10.1038/s41598-020-62505-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transition metal oxides potentially present higher specific capacities than the current anodes based on carbon, providing an increasing energy density as compared to commercial Li-ion batteries. However, many parameters could influence the performance of the batteries, which depend on the processing of the electrode materials leading to different surface properties, sizes or crystalline phases. In this work a comparative study of tin and titanium oxide nanoparticles synthesized by different methods, undoped or Li doped, used as single components or in mixed ratio, or alternatively forming a composite with graphene oxide have been tested demonstrating an enhancement in capacity with Li doping and better cyclability for mixed phases and composite anodes.
引用
收藏
页数:8
相关论文
共 46 条
[31]   Preparation of SnO2-Nanocrystal/Graphene-Nanosheets Composites and Their Lithium Storage Ability [J].
Li, Yueming ;
Lv, Xiaojun ;
Lu, Jin ;
Li, Jinghong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (49) :21770-21774
[32]   High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries [J].
Lian, Peichao ;
Zhu, Xuefeng ;
Liang, Shuzhao ;
Li, Zhong ;
Yang, Weishen ;
Wang, Haihui .
ELECTROCHIMICA ACTA, 2011, 56 (12) :4532-4539
[33]   Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries [J].
Madian, Mahmoud ;
Eychmueller, Alexander ;
Giebeler, Lars .
BATTERIES-BASEL, 2018, 4 (01)
[34]   A review of advanced and practical lithium battery materials [J].
Marom, Rotem ;
Amalraj, S. Francis ;
Leifer, Nicole ;
Jacob, David ;
Aurbach, Doron .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :9938-9954
[35]   Hydrogen Bond Networks in Graphene Oxide Composite Paper: Structure and Mechanical Properties [J].
Medhekar, Nikhil V. ;
Ramasubramaniam, Ashwin ;
Ruoff, Rodney S. ;
Shenoy, Vivek B. .
ACS NANO, 2010, 4 (04) :2300-2306
[36]  
Nazri G. -A., 2008, Lithium batteries: science and technology
[37]   High-Capacity Anode Materials for Lithium- Ion Batteries: Choice of Elements and Structures for Active Particles [J].
Nitta, Naoki ;
Yushin, Gleb .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (03) :317-336
[38]  
Pechini M.P., 1967, U.S. Patent, Patent No. 3330697
[39]   Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J].
Poizot, P ;
Laruelle, S ;
Grugeon, S ;
Dupont, L ;
Tarascon, JM .
NATURE, 2000, 407 (6803) :496-499
[40]   Lithium batteries: Status, prospects and future [J].
Scrosati, Bruno ;
Garche, Juergen .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2419-2430