Comparative study of the implementation of tin and titanium oxide nanoparticles as electrodes materials in Li-ion batteries

被引:16
作者
del Prado, Felix [1 ]
Andersen, Hanne Flaten [2 ]
Taeno, Maria [1 ]
Mhlen, Jan Petter [2 ]
Ramirez-Castellanos, Julio [3 ]
Maestre, David [1 ]
Karazhanov, Smagul [2 ]
Cremades, Ana [1 ]
机构
[1] Univ Complutense Madrid, Fac CC Fis, Dept Fis Mat, Madrid 28040, Spain
[2] Inst Energiteknikk, NO-2027 Kjeller, Norway
[3] Univ Complutense Madrid, Fac CC Quim, Dept Quim Inorgan 1, Madrid 28040, Spain
关键词
ULTRAFINE SNO2 NANOPARTICLES; LITHIUM INTERCALATION; AMORPHOUS TIO2; ANODE MATERIAL; CAPACITY; GRAPHENE; NANOSTRUCTURES; COMPOSITE; DIFFUSION; PROMISE;
D O I
10.1038/s41598-020-62505-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transition metal oxides potentially present higher specific capacities than the current anodes based on carbon, providing an increasing energy density as compared to commercial Li-ion batteries. However, many parameters could influence the performance of the batteries, which depend on the processing of the electrode materials leading to different surface properties, sizes or crystalline phases. In this work a comparative study of tin and titanium oxide nanoparticles synthesized by different methods, undoped or Li doped, used as single components or in mixed ratio, or alternatively forming a composite with graphene oxide have been tested demonstrating an enhancement in capacity with Li doping and better cyclability for mixed phases and composite anodes.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Ultrafine SnO2 nanoparticles encapsulated in ordered mesoporous carbon framework for Li-ion battery anodes [J].
Abouali, Sara ;
Akbari Garakani, Mohammad ;
Kim, Jang-Kyo .
ELECTROCHIMICA ACTA, 2018, 284 :436-443
[2]   Electrolytes for lithium and lithium ion batteries: From synthesis of novel lithium borates and ionic liquids to development of novel measurement methods [J].
Amereller, M. ;
Schedlbauer, T. ;
Moosbauer, D. ;
Schreiner, C. ;
Stock, C. ;
Wudy, F. ;
Zugmann, S. ;
Hammer, H. ;
Maurer, A. ;
Gschwind, R. M. ;
Wiemhoefer, H. -D. ;
Winter, M. ;
Gores, H. J. .
PROGRESS IN SOLID STATE CHEMISTRY, 2014, 42 (04) :39-56
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Crystalline SnO2 @ amorphous TiO2 core-shell nanostructures for high-performance lithium ion batteries [J].
Chen, Hongwen ;
Lu, Yangdan ;
Zhu, Hangjian ;
Guo, Yichuan ;
Hu, Rui ;
Khatoon, Rabia ;
Chen, Lingxiang ;
Zeng, Yu-Jia ;
Jiao, Lei ;
Leng, Jianxing ;
Lu, Jianguo .
ELECTROCHIMICA ACTA, 2019, 310 :203-212
[5]   SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries [J].
Chen, Jun Song ;
Lou, Xiong Wen .
SMALL, 2013, 9 (11) :1877-1893
[6]   SnO2 and TiO2 nanosheets for lithium-ion batteries [J].
Chen, Jun Song ;
Lou, Xiong Wen .
MATERIALS TODAY, 2012, 15 (06) :246-254
[7]   Incorporation of amorphous TiO2 into one-dimensional SnO2 nanostructures as superior anodes for lithium-ion batteries [J].
Cheong, Jun Young ;
Kim, Chanhoon ;
Jung, Ji-Won ;
Yun, Tae-Gwang ;
Youn, Doo Young ;
Cho, Su-Ho ;
Yoon, Ki Ro ;
Jang, Hye-Yeon ;
Song, Seok Won ;
Kim, Il-Doo .
JOURNAL OF POWER SOURCES, 2018, 400 :485-492
[8]  
Crompton T.R., 2000, BATTERY REFERENCE BO, V3rd
[9]   Controlled synthesis of lithium doped tin dioxide nanoparticles by a polymeric precursor method and analysis of the resulting defect structure [J].
del Prado, Felix ;
Cremades, Ana ;
Maestre, David ;
Ramirez-Castellanos, Julio ;
Gonzalez-Calbet, Jose M. ;
Piqueras, Javier .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (15) :6299-6308
[10]   Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J].
Deng, Da ;
Kim, Min Gyu ;
Lee, Jim Yang ;
Cho, Jaephil .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) :818-837